FREE BOOKS

Author's List




PREV.   NEXT  
|<   369   370   371   372   373   374   375   376   377   378   379   380   381   382   383   384   385   386   387   388   389   390   391   392   393  
394   395   396   397   398   399   400   401   402   403   404   405   406   407   408   409   410   411   412   413   414   415   416   417   418   >>   >|  
the sphere. If we consider for the present only the primary plane of symmetry, the figure is reduced to two dimensions. Let AP (fig. 16) represent the surface of the grating, O being the centre of the circle. Then, if Q be any radiant point and Q' its image (primary focus) in the spherical mirror AP, we have 1 1 2cos[phi] -- + - = ---------, v1 u a where v1 = AQ', u = AQ, a = OA, [phi] = angle of incidence QAO, equal to the angle of reflection Q'AO. If Q be on the circle described upon OA as diameter, so that u = a cos [phi], then Q' lies also upon the same circle; and in this case it follows from the symmetry that the unsymmetrical aberration (depending upon a) vanishes. This disposition is adopted in Rowland's instrument; only, in addition to the central image formed at the angle [phi]' = [phi], there are a series of spectra with various values of [phi]', but all disposed upon the same circle. Rowland's investigation is contained in the paper already referred to; but the following account of the theory is in the form adopted by R. T. Glazebrook (_Phil. Mag._, 1883). In order to find the difference of optical distances between the courses QAQ', QPQ', we have to express QP - QA, PQ' - AQ'. To find the former, we have, if OAQ = [phi], AOP = [omega], QP^2 = u^2 + 4a^2sin^21/2[omega] - 4au sin 1/2[omega] sin (1/2[omega] - [phi]) = (u + a sin[phi] sin[omega])^2 - a^2 sin^2[phi] sin^2[omega] + 4a sin^2 1/2[omega](a - u cos[phi]). Now as far as [omega]^4 4 sin^2 1/2[omega] = sin^2[omega] + 1/4sin^4[omega], and thus to the same order QP^2 = (u + a sin [phi] sin [omega])^2 -a cos [phi](u - a cos [phi]) sin^2[omega] + 1/4 a(a - u cos[phi]) sin^4 [omega]. But if we now suppose that Q lies on the circle u = a cos [phi], the middle term vanishes, and we get, correct as far as [omega]^4, / / a^2 sin^2[phi] sin^4[omega]\ QP = (u + a sin[phi] sin[omega]) / ( 1 + --------------------------- ); \/ \ 4u / so that QP - u = a sin [phi] sin [omega] + 1/8 a sin[phi] tan[phi] sin^4 [omega] (9), in which it is to be noticed that the adjustment necessary to secure the disappearance of sin^2[omega] is sufficient also to destroy the term in sin^3[omega]. A similar expression can be found for Q'P - Q'A;
PREV.   NEXT  
|<   369   370   371   372   373   374   375   376   377   378   379   380   381   382   383   384   385   386   387   388   389   390   391   392   393  
394   395   396   397   398   399   400   401   402   403   404   405   406   407   408   409   410   411   412   413   414   415   416   417   418   >>   >|  



Top keywords:

circle

 

vanishes

 
adopted
 

Rowland

 

primary

 

symmetry

 

express

 

courses

 

Glazebrook

 

reduced


distances

 
optical
 
difference
 

figure

 
noticed
 

adjustment

 

destroy

 

sufficient

 

disappearance

 

secure


correct

 

present

 

similar

 

middle

 
expression
 

suppose

 
sphere
 

surface

 

grating

 

diameter


represent

 
unsymmetrical
 

centre

 

mirror

 

spherical

 
radiant
 

incidence

 
reflection
 

aberration

 

depending


disposed

 

investigation

 
values
 

contained

 

theory

 
account
 

referred

 
spectra
 

instrument

 

dimensions