FREE BOOKS

Author's List




PREV.   NEXT  
|<   386   387   388   389   390   391   392   393   394   395   396   397   398   399   400   401   402   403   404   405   406   407   408   409   410  
411   412   413   414   415   416   417   418   419   420   421   422   423   424   425   426   427   428   429   430   431   432   433   434   435   >>   >|  
uccessive convolutions envelop one another without intersection. [Illustration: Fig. 19.] The utility of the curve depends upon the fact that the elements of arc represent, in amplitude and phase, the component vibrations due to the corresponding portions of the primary wave-front. For by (30) d[sigma] = dv, and by (2) dv is proportional to ds. Moreover by (2) and (31) the retardation of phase of the elementary vibration from PQ (fig. 17) is 2[pi][delta]/[lambda], or [phi]. Hence, in accordance with the rule for compounding vector quantities, the resultant vibration at B, due to any finite part of the primary wave, is represented in amplitude and phase by the chord joining the extremities of the corresponding arc ([sigma]2 - [sigma]1). In applying the curve in special cases of diffraction to exhibit the effect at any point P (fig. 18) the centre of the curve O is to be considered to correspond to that point C of the primary wave-front which lies nearest to P. The operative part, or parts, of the curve are of course those which represent the unobstructed portions of the primary wave. Let us reconsider, following Cornu, the diffraction of a screen unlimited on one side, and on the other terminated by a straight edge. On the illuminated side, at a distance from the shadow, the vibration is represented by JJ'. The co-ordinates oi J, J' being (1/2, 1/2), (-1/2, -1/2), I^2 is 2; and the phase is 1/8 period in arrear of that of the element at O. As the point under contemplation is supposed to approach the shadow, the vibration is represented by the chord drawn from J to a point on the other half of the curve, which travels inwards from J' towards O. The amplitude is thus subject to fluctuations, which increase as the shadow is approached. At the point O the intensity is one-quarter of that of the entire wave, and after this point is passed, that is, when we have entered the geometrical shadow, the intensity falls off gradually to zero, _without fluctuations_. The whole progress of the phenomenon is thus exhibited to the eye in a very instructive manner. We will next suppose that the light is transmitted by a slit, and inquire what is the effect of varying the width of the slit upon the illumination at the projection of its centre. Under these circumstances the arc to be considered is bisected at O, and its length is proportional to the width
PREV.   NEXT  
|<   386   387   388   389   390   391   392   393   394   395   396   397   398   399   400   401   402   403   404   405   406   407   408   409   410  
411   412   413   414   415   416   417   418   419   420   421   422   423   424   425   426   427   428   429   430   431   432   433   434   435   >>   >|  



Top keywords:

shadow

 

vibration

 
primary
 

amplitude

 

represented

 

fluctuations

 

diffraction

 

intensity

 

considered

 

centre


effect

 
portions
 
represent
 

proportional

 
ordinates
 

approached

 

increase

 

uccessive

 

contemplation

 

element


period

 

arrear

 

supposed

 

approach

 
subject
 

inwards

 
travels
 

suppose

 

transmitted

 

instructive


manner

 
inquire
 

circumstances

 

bisected

 

length

 
varying
 

illumination

 
projection
 

entered

 

passed


entire

 

geometrical

 
progress
 

phenomenon

 

exhibited

 
gradually
 

quarter

 
lambda
 

accordance

 

quantities