FREE BOOKS

Author's List




PREV.   NEXT  
|<   395   396   397   398   399   400   401   402   403   404   405   406   407   408   409   410   411   412   413   414   415   416   417   418   419  
420   421   422   423   424   425   426   427   428   429   430   431   432   433   434   435   436   437   438   439   440   441   442   443   444   >>   >|  
pass on without resolution, and the integrated effect of all the secondary waves (S 2). The occurrence of factors such as sin [phi], or 1/2(1 + cos [theta]), in the expression of the secondary wave has no influence upon the result of the integration, the effects of all the elements for which the factors differ appreciably from unity being destroyed by mutual interference. The choice between various methods of resolution, all mathematically admissible, would be guided by physical considerations respecting the mode of action of obstacles. Thus, to refer again to the acoustical analogue in which plane waves are incident upon a perforated rigid screen, the circumstances of the case are best represented by the first method of resolution, leading to symmetrical secondary waves, in which the normal motion is supposed to be zero over the unperforated parts. Indeed, if the aperture is very small, this method gives the correct result, save as to a constant factor. In like manner our present law (20) would apply to the kind of obstruction that would be caused by an actual physical division of the elastic medium, extending over the whole of the area supposed to be occupied by the intercepting screen, but of course not extending to the parts supposed to be perforated. On the electromagnetic theory, the problem of diffraction becomes definite when the properties of the obstacle are laid down. The simplest supposition is that the material composing the obstacle is perfectly conducting, i.e. perfectly reflecting. On this basis A. J. W. Sommerfeld (_Math. Ann._, 1895, 47, p. 317), with great mathematical skill, has solved the problem of the shadow thrown by a semi-infinite plane screen. A simplified exposition has been given by Horace Lamb (_Proc. Lond. Math. Soc._, 1906, 4, p. 190). It appears that Fresnel's results, although based on an imperfect theory, require only insignificant corrections. Problems not limited to two dimensions, such for example as the shadow of a circular disk, present great difficulties, and have not hitherto been treated by a rigorous method; but there is no reason to suppose that Fresnel's results would be departed from materially. (R.) FOOTNOTES: [1] The descending series for J0(z) appears to have been first given by Sir W. Hamilton in a memoir on "Fluctuating Functions," _Roy. Irish Trans._, 1840. [2] Airy, loc.
PREV.   NEXT  
|<   395   396   397   398   399   400   401   402   403   404   405   406   407   408   409   410   411   412   413   414   415   416   417   418   419  
420   421   422   423   424   425   426   427   428   429   430   431   432   433   434   435   436   437   438   439   440   441   442   443   444   >>   >|  



Top keywords:

method

 

resolution

 

screen

 
secondary
 

supposed

 
appears
 

Fresnel

 
perforated
 

results

 
shadow

physical

 
present
 
problem
 
theory
 

perfectly

 
factors
 

obstacle

 

extending

 

result

 
simplified

Horace

 

infinite

 
exposition
 

Sommerfeld

 

reflecting

 

conducting

 

composing

 

simplest

 

supposition

 

material


mathematical

 

solved

 

thrown

 
FOOTNOTES
 

descending

 

series

 
materially
 

reason

 
suppose
 

departed


Hamilton

 
memoir
 

Fluctuating

 
Functions
 

rigorous

 

treated

 
imperfect
 

require

 

insignificant

 

circular