FREE BOOKS

Author's List




PREV.   NEXT  
|<   366   367   368   369   370   371   372   373   374   375   376   377   378   379   380   381   382   383   384   385   386   387   388   389   390  
391   392   393   394   395   396   397   398   399   400   401   402   403   404   405   406   407   408   409   410   411   412   413   414   415   >>   >|  
rther apparatus (usually a telescope) of high magnifying power. In the above discussion it has been supposed that the ruling is accurate, and we have seen that by increase of m a high resolving power is attainable with a moderate number of lines. But this procedure (apart from the question of illumination) is open to the objection that it makes excessive demands upon accuracy. According to the principle already laid down it can make but little difference in the principal direction corresponding to the first spectrum, provided each line lie within a quarter of an interval (a + d) from its theoretical position. But, to obtain an equally good result in the m^th spectrum, the error must be less than 1/m of the above amount.[7] There are certain errors of a systematic character which demand special consideration. The spacing is usually effected by means of a screw, to each revolution of which corresponds a large number (e.g. one hundred) of lines. In this way it may happen that although there is almost perfect periodicity with each revolution of the screw after (say) 100 lines, yet the 100 lines themselves are not equally spaced. The "ghosts" thus arising were first described by G. H. Quincke (_Pogg. Ann._, 1872, 146, p. 1), and have been elaborately investigated by C. S. Peirce (_Ann. Journ. Math._, 1879, 2, p. 330), both theoretically and experimentally. The general nature of the effects to be expected in such a case may be made clear by means of an illustration already employed for another purpose. Suppose two similar and accurately ruled transparent gratings to be superposed in such a manner that the lines are parallel. If the one set of lines exactly bisect the intervals between the others, the grating interval is practically halved, and the previously existing spectra of odd order vanish. But a very slight relative displacement will cause the apparition of the odd spectra. In this case there is approximate periodicity in the half interval, but complete periodicity only after the whole interval. The advantage of approximate bisection lies in the superior brilliancy of the surviving spectra; but in any case the compound grating may be considered to be perfect in the longer interval, and the definition is as good as if the bisection were accurate. [Illustration: | | | | | ( ( ( | | | | ) | ( FIG. 9.--
PREV.   NEXT  
|<   366   367   368   369   370   371   372   373   374   375   376   377   378   379   380   381   382   383   384   385   386   387   388   389   390  
391   392   393   394   395   396   397   398   399   400   401   402   403   404   405   406   407   408   409   410   411   412   413   414   415   >>   >|  



Top keywords:

interval

 

spectra

 
periodicity
 

spectrum

 

revolution

 

perfect

 

equally

 

grating

 

approximate

 

accurate


bisection

 
number
 
nature
 

experimentally

 
general
 

effects

 

longer

 

illustration

 

employed

 

considered


expected

 

compound

 

definition

 

investigated

 
elaborately
 

Peirce

 
Illustration
 

theoretically

 

Suppose

 

halved


previously

 
existing
 

practically

 

advantage

 

complete

 
relative
 

displacement

 
slight
 

apparition

 

vanish


intervals

 

similar

 
accurately
 

superior

 

brilliancy

 
surviving
 

purpose

 
transparent
 

gratings

 

bisect