FREE BOOKS

Author's List




PREV.   NEXT  
|<   273   274   275   276   277   278   279   280   281   282   283   284   285   286   287   288   289   290   291   292   293   294   295   296   297  
298   299   300   301   302   303   304   305   306   307   308   309   310   311   312   313   314   315   316   317   318   319   320   321   322   >>   >|  
say, D(e^ax u) = e^ax (D + a)u; hence D^2(e^ax u), i.e. d^2/dx^2 (e^ax u), being equal to D(e^ax v), where v=(D + a)u, is equal to e^ax(D + a)v, that is to e^ax(D + a)^2u. In this way we find D^n(e^ax u) = e^ax(D + a)^n u, where n is any positive integer. Hence if [psi](D) be any polynomial in D with constant coefficients, [psi](D)(e^ax u) = e^ax [psi](D + a)u. Next, denoting [int] udx by D^-1 u, and any solution of the differential equation dz/dx + az = u by z = (d + a)^-1 u, we have D[e^ax(D + a)^-1 u] = D(e^ax z) = e^ax(D + a)z = e^ax u, so that we may write D^-1(e^ax u) = e^ax(D+a)^-1 u, where the meaning is that one value of the left side is equal to one value of the right side; from this, the expression D^-2(e^axu), which means D^-1[D^-1(e^ax u)], is equal to D^-1(e^ax z) and hence to e^ax(D + a)^-1 z, which we write e^ax(D + a)^-2 u; proceeding thus we obtain D^-n(e^ax u) = e^ax(D + a)^-n u, where n is any positive integer, and the meaning, as before, is that one value of the first expression is equal to one value of the second. More generally, if [psi](D) be any polynomial in D with constant coefficients, and we agree to denote by 1/[psi](D) u any solution z of the differential equation [psi](D)z = u, we have, if v = 1/[psi](D + a) u, the identity [psi](D)(e^ax v) = e^ax [psi](D + a)v = e^ax u, which we write in the form 1 1 --------(e^ax u) = e^ax ------------ u. [psi](D) [psi](D + a) This gives us the first step in the method we are explaining, namely that a solution of the differential equation [psi](D)y = e^ax u + e^bx v + ... where u, v, ... are any functions of x, is any function denoted by the expression 1 1 e^ax ------------ u + e^ax ------------ v + .... [psi](D + a) [psi](D + b) It is now to be shown how to obtain one value of 1/[psi](D + a) u, when u is a polynomial in x, namely one solution of the differential equation [psi](D + a)z = u. Let the highest power of x entering in u be x^m; if t were a variable quantity, the rational fraction in t, 1/[psi](t + a), by first writing it as a sum of partial fractions, or otherwise, could be identically written in the form K_r t^-r + K_r-1 t^-r+1 + ... + K1 t^-1 + H + H1t + ... + H_m t^m + t^m+1 [p](t)/[psi](t + a), where [p](t) is a polynomial in t; this shows tha
PREV.   NEXT  
|<   273   274   275   276   277   278   279   280   281   282   283   284   285   286   287   288   289   290   291   292   293   294   295   296   297  
298   299   300   301   302   303   304   305   306   307   308   309   310   311   312   313   314   315   316   317   318   319   320   321   322   >>   >|  



Top keywords:

polynomial

 

equation

 
differential
 

solution

 

expression

 
meaning

coefficients
 
constant
 

obtain

 

positive

 
integer
 

highest


entering

 
denoted
 
function
 
written
 
identically
 

fraction


rational

 
quantity
 

writing

 

fractions

 

partial

 

variable


denoting

 
method
 

explaining

 

identity

 

denote

 

proceeding


generally

 

functions