FREE BOOKS

Author's List




PREV.   NEXT  
|<   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47  
48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   >>   >|  
d cylinder block is soldered in place. The cylinder can then be mounted. It will be seen that the pivot goes through both the second cylinder block and the engine standard. A small spring is placed over the protruding end of the pivot and a nut put in place. By turning this nut the pressure on the face of the two cylinder blocks can be adjusted, and the model engineer must always remember that the pressure on these springs must be greater than the steam pressure in the feed-pipe. Otherwise the steam pressure will force the cylinder-block faces apart and steam leakage will result. On the other hand, the pressure of the spring should not be too great, since that would interfere with the free movement of the engine cylinder. Nothing now remains to be made except the crank and the flywheel. The crank revolves in a small brass bearing which is soldered in place on the engine standard. It will be seen that the sheet brass that makes up the engine standard is not thick enough to offer a good bearing for the crank. The crank is bent to shape from a piece of 1/8-inch brass rod, and the author advises the builder to heat the brass rod red-hot while the bending is done. This will prevent it from fracturing, and will also permit a sharp bend to be made. The flywheel is a circular piece of brass 1 inch in diameter. Its center is drilled out and it is soldered to the crank as illustrated in Fig. 54. Two other holes 1/8 inch in diameter are drilled in the flywheel as illustrated, and two small brass pins are cut out from 1/8-inch brass rod and forced into these holes and then soldered. These provide a method of driving the propeller-shaft that is shown very clearly at Fig. 57. The steam feed-pipe that runs from the boiler to the engine can be of small copper tubing. It may be necessary to mount the engine on a small block, as shown in Fig. 53. After the steam in the boiler has reached a sufficient pressure the engine crank should be given a couple of twists in order to start it. Before operating the engine a little lubricating oil should be run into the cylinder through the inlet or exhaust ports. The cylinder should always be kept well lubricated. The contacting faces of the cylinder blocks should also be kept lubricated. _Caution._ Always keep water in the boiler. Never permit it to run dry, as this would cause a boiler explosion. When the engine is started and cannot be made to run, take the burner from under the boiler so t
PREV.   NEXT  
|<   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47  
48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   >>   >|  



Top keywords:

engine

 

cylinder

 

pressure

 

boiler

 
soldered
 

flywheel

 

standard

 

lubricated

 

bearing

 

spring


diameter

 

illustrated

 

drilled

 
permit
 
blocks
 
forced
 

driving

 

copper

 

tubing

 

provide


method

 

propeller

 

Always

 
contacting
 

Caution

 

explosion

 
burner
 
started
 

exhaust

 
sufficient

couple
 

reached

 
twists
 

lubricating

 
operating
 

Before

 

Otherwise

 
greater
 

remember

 

springs


leakage

 
result
 

interfere

 

engineer

 
mounted
 

protruding

 

adjusted

 

turning

 
movement
 

bending