FREE BOOKS

Author's List




PREV.   NEXT  
|<   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56  
57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   >>   >|  
ation sums that have the same product, and this may be done in many ways. For example, 7 x 658 and 14 x 329 contain all the digits once, and the product in each case is the same--4,606. Now, it will be seen that the sum of the digits in the product is 16, which is neither the highest nor the lowest sum so obtainable. Can you find the solution of the problem that gives the lowest possible sum of digits in the common product? Also that which gives the highest possible sum? 84.--THE PIERROT'S PUZZLE. [Illustration] The Pierrot in the illustration is standing in a posture that represents the sign of multiplication. He is indicating the peculiar fact that 15 multiplied by 93 produces exactly the same figures (1,395), differently arranged. The puzzle is to take any four digits you like (all different) and similarly arrange them so that the number formed on one side of the Pierrot when multiplied by the number on the other side shall produce the same figures. There are very few ways of doing it, and I shall give all the cases possible. Can you find them all? You are allowed to put two figures on each side of the Pierrot as in the example shown, or to place a single figure on one side and three figures on the other. If we only used three digits instead of four, the only possible ways are these: 3 multiplied by 51 equals 153, and 6 multiplied by 21 equals 126. 85.--THE CAB NUMBERS. A London policeman one night saw two cabs drive off in opposite directions under suspicious circumstances. This officer was a particularly careful and wide-awake man, and he took out his pocket-book to make an entry of the numbers of the cabs, but discovered that he had lost his pencil. Luckily, however, he found a small piece of chalk, with which he marked the two numbers on the gateway of a wharf close by. When he returned to the same spot on his beat he stood and looked again at the numbers, and noticed this peculiarity, that all the nine digits (no nought) were used and that no figure was repeated, but that if he multiplied the two numbers together they again produced the nine digits, all once, and once only. When one of the clerks arrived at the wharf in the early morning, he observed the chalk marks and carefully rubbed them out. As the policeman could not remember them, certain mathematicians were then consulted as to whether there was any known method for discovering all the pairs of numbers that have the peculiarity that the off
PREV.   NEXT  
|<   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56  
57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   >>   >|  



Top keywords:
digits
 
numbers
 
multiplied
 

product

 
figures
 

Pierrot

 
peculiarity
 
policeman
 

figure

 

equals


number

 
lowest
 

highest

 

consulted

 

pocket

 
mathematicians
 

directions

 

opposite

 

officer

 

circumstances


discovering

 

suspicious

 

method

 

careful

 

returned

 

gateway

 

morning

 

looked

 
arrived
 
nought

produced

 
noticed
 

clerks

 

marked

 

rubbed

 

repeated

 

remember

 

pencil

 

Luckily

 

observed


carefully

 
discovered
 

allowed

 

PUZZLE

 

Illustration

 
illustration
 
PIERROT
 

problem

 

common

 
standing