FREE BOOKS

Author's List




PREV.   NEXT  
|<   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82  
83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   >>   >|  
15. The direction of the cuts is pretty obvious. It will be seen that the sides of the square in Fig. 14 are marked off into six equal parts. The sides of the cross are found by ruling lines from certain of these points to others. [Illustration: FIG. 14.] [Illustration: FIG. 15.] I will now explain, as I promised, why a Greek cross may be cut into four pieces in an infinite number of different ways to make a square. Draw a cross, as in Fig. 16. Then draw on transparent paper the square shown in Fig. 17, taking care that the distance c to d is exactly the same as the distance a to b in the cross. Now place the transparent paper over the cross and slide it about into different positions, only be very careful always to keep the square at the same angle to the cross as shown, where a b is parallel to c d. If you place the point c exactly over a the lines will indicate the solution (Figs. 10 and 11). If you place c in the very centre of the dotted square, it will give the solution in Figs. 8 and 9. You will now see that by sliding the square about so that the point c is always within the dotted square you may get as many different solutions as you like; because, since an infinite number of different points may theoretically be placed within this square, there must be an infinite number of different solutions. But the point c need not necessarily be placed within the dotted square. It may be placed, for example, at point e to give a solution in four pieces. Here the joins at a and f may be as slender as you like. Yet if you once get over the edge at a or f you no longer have a solution in four pieces. This proof will be found both entertaining and instructive. If you do not happen to have any transparent paper at hand, any thin paper will of course do if you hold the two sheets against a pane of glass in the window. [Illustration: FIG. 16.] [Illustration: FIG. 17.] It may have been noticed from the solutions of the puzzles that I have given that the side of the square formed from the cross is always equal to the distance a to b in Fig. 16. This must necessarily be so, and I will presently try to make the point quite clear. We will now go one step further. I have already said that the ideal solution to a cutting-out puzzle is always that which requires the fewest possible pieces. We have just seen that two crosses of the same size may be cut out of a square in five pieces. The reader who succeeded in solving th
PREV.   NEXT  
|<   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82  
83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   >>   >|  



Top keywords:

square

 

solution

 

pieces

 

Illustration

 

number

 

distance

 

transparent

 

dotted

 
solutions

infinite

 

necessarily

 

points

 
reader
 
happen
 

instructive

 

entertaining

 

longer

 

solving


succeeded

 

crosses

 
puzzles
 

requires

 

puzzle

 
formed
 

cutting

 

presently

 

noticed


sheets

 

fewest

 

window

 

taking

 

positions

 

promised

 
explain
 

obvious

 
marked

pretty

 
direction
 
ruling
 

careful

 
theoretically
 

slender

 
parallel
 

centre

 

sliding