FREE BOOKS

Author's List




PREV.   NEXT  
|<   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86  
87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   >>   >|  
everybody. We will now go one step further and deal with the half-square. Take a square and cut it in half diagonally. Now try to discover how to cut this triangle into four pieces that will form a Greek cross. The solution is shown in Figs. 31 and 32. In this case it will be seen that we divide two of the sides of the triangle into three equal parts and the long side into four equal parts. Then the direction of the cuts will be easily found. It is a pretty puzzle, and a little more difficult than some of the others that I have given. It should be noted again that it would have been much easier to locate the cuts in the reverse puzzle of cutting the cross to form a half-square triangle. [Illustration: FIG. 31.] [Illustration: FIG. 32.] [Illustration: FIG. 33.] [Illustration: FIG. 34.] Another ideal that the puzzle maker always keeps in mind is to contrive that there shall, if possible, be only one correct solution. Thus, in the case of the first puzzle, if we only require that a Greek cross shall be cut into four pieces to form a square, there is, as I have shown, an infinite number of different solutions. It makes a better puzzle to add the condition that all the four pieces shall be of the same size and shape, because it can then be solved in only one way, as in Figs. 8 and 9. In this way, too, a puzzle that is too easy to be interesting may be improved by such an addition. Let us take an example. We have seen in Fig. 28 that Fig. 33 can be cut into two pieces to form a Greek cross. I suppose an intelligent child would do it in five minutes. But suppose we say that the puzzle has to be solved with a piece of wood that has a bad knot in the position shown in Fig. 33--a knot that we must not attempt to cut through--then a solution in two pieces is barred out, and it becomes a more interesting puzzle to solve it in three pieces. I have shown in Figs. 33 and 34 one way of doing this, and it will be found entertaining to discover other ways of doing it. Of course I could bar out all these other ways by introducing more knots, and so reduce the puzzle to a single solution, but it would then be overloaded with conditions. And this brings us to another point in seeking the ideal. Do not overload your conditions, or you will make your puzzle too complex to be interesting. The simpler the conditions of a puzzle are, the better. The solution may be as complex and difficult as you like, or as happens, but the co
PREV.   NEXT  
|<   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86  
87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   >>   >|  



Top keywords:

puzzle

 

pieces

 

solution

 
Illustration
 

square

 

interesting

 

triangle

 

conditions

 
complex

suppose

 

solved

 
discover
 

difficult

 
barred
 

diagonally

 

entertaining

 

attempt

 
minutes

position

 

overload

 

simpler

 
seeking
 

reduce

 

single

 

introducing

 

overloaded

 
brings

intelligent

 
direction
 

require

 

infinite

 

number

 

solutions

 

correct

 
easily
 
Another

contrive
 

pretty

 

condition

 

addition

 

improved

 

easier

 
divide
 

cutting

 

reverse


locate