FREE BOOKS

Author's List




PREV.   NEXT  
|<   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41  
42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   >>   >|  
e compounded of the motions of two common pendulums, vibrating at right angles to one another, and one revolution of a conical pendulum will be performed in the same time as two vibrations of a common pendulum, of which the length is equal to the vertical height of the point of suspension above the plane of revolution of the balls. 40. _Q._--Is not the conical pendulum or governor of a steam engine driven by the engine? _A._--Yes. 41. _Q._--Then will it not be driven round as any other mechanism would be at a speed proportional to that of the engine? _A._--It will. 42. _Q._--Then how can the length of the arms affect the time of revolution? [Illustration: Fig. 1.] _A._--By flying out until they assume a vertical height answering to the velocity with which they rotate round the central axis. As the speed is increased the balls expand, and the height of the cone described by the arms is diminished, until its vertical height is such that a pendulum of that length would perform two vibrations for every revolution of the governor. By the outward motion of the arms, they partially shut off the steam from the engine. If, therefore, a certain expansion of the balls be desired, and a certain length be fixed upon for the arms, so that the vertical height of the cone is fixed, then the speed of the governor must be such, that it will make half the number of revolutions in a given time that a pendulum equal in length to the height of the cone would make of vibrations. The rule is, multiply the square root of the height of the cone in inches by 0.31986, and the product will be the right time of revolution in seconds. If the number of revolutions and the length of the arms be fixed, and it is wanted to know what is the diameter of the circle described by the balls, you must divide the constant number 187.58 by the number of revolutions per minute, and the square of the quotient will be the vertical height in inches of the centre of suspension above the plane of the balls' revolution. Deduct the square of the vertical height in inches from the square of the length of the arm in inches, and twice the square root of the remainder is the diameter of the circle in which the centres of the balls revolve. 43. _Q._ Cannot the operation of a governor be deduced merely from the consideration of centrifugal and centripetal forces? _A._--It can; and by a very simple process. The horizontal distance of the arm from the spindl
PREV.   NEXT  
|<   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41  
42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   >>   >|  



Top keywords:

height

 
length
 

revolution

 

vertical

 

pendulum

 

square

 
governor
 

engine

 

inches

 
number

revolutions

 
vibrations
 

diameter

 

circle

 
conical
 
driven
 
common
 

suspension

 

product

 
centrifugal

centripetal

 

horizontal

 

distance

 

spindl

 

process

 

simple

 

multiply

 
seconds
 

forces

 

consideration


operation
 
Deduct
 
deduced
 

centre

 

Cannot

 
revolve
 
centres
 

remainder

 

quotient

 

minute


divide

 
constant
 

wanted

 

velocity

 

mechanism

 

proportional

 

Illustration

 
affect
 

pendulums

 
vibrating