FREE BOOKS

Author's List




PREV.   NEXT  
|<   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89  
90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   >>   >|  
sure remaining the same, may be found by the following rule:--To each of the temperatures before and after expansion, add the constant number 458: divide the greater sum by the less, and multiply the quotient by the volume at the lower temperature; the product will give the expanded volume. 174. _Q._--If the relative volumes of steam and water are known, is it possible to tell the quantity of water which should be supplied to a boiler, when the quantity of steam expended is specified? _A._--Yes; at the atmospheric pressure, about a cubic inch of water has to be supplied to the boiler for every cubic foot of steam abstracted; at other pressures, the relative bulk of water and steam may be determined as follows:--To the temperature of steam in degrees of Fahrenheit, add the constant number 458, multiply the sum by 37.3, and divide the product by the elastic force of the steam in pounds per square inch; the quotient will give the volume required. 175. _Q._--Will this rule give the proper dimensions of the pump for feeding the boiler with water? _A._--No; it is necessary in practice that the feed pump should be able to supply the boiler with a much larger quantity of water than what is indicated by these proportions, from the risk of leaks, priming, or other disarrangements, and the feed pump is usually made capable of raising 3-1/2 times the water evaporated by the boiler. About 1/240th of the capacity of the cylinder answers very well for the capacity of the feed pump in the case of low pressure engines, supposing the cylinder to be double acting, and the pump single acting; but it is better to exceed this size. 176. _Q._--Is this rule for the size of the feed pump applicable to the case of high pressure engines? _A._--Clearly not; for since a cylinder full of high pressure steam, contains more water than the same cylinder full of low pressure steam, the size of the feed must vary in the same proportion as the density of the steam. In all pumps a good deal of the effect is lost from the imperfect action of the valves; and in engines travelling at a high rate of speed, in particular, a large part of the water is apt to return, through the suction valve of the pump, especially if much lift be permitted to that valve. In steam vessels moreover, where the boiler is fed with salt water, and where a certain quantity of supersalted water has to be blown out of the boiler from time to time, to prevent the water from r
PREV.   NEXT  
|<   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89  
90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   >>   >|  



Top keywords:

boiler

 
pressure
 

quantity

 

cylinder

 

volume

 

engines

 

acting

 

supplied

 
constant
 

quotient


multiply

 

relative

 

capacity

 

product

 

divide

 
number
 

temperature

 

Clearly

 
remaining
 

single


double

 

supposing

 

answers

 

exceed

 
applicable
 

action

 

permitted

 

vessels

 

suction

 

prevent


supersalted

 

return

 
effect
 
density
 

imperfect

 

valves

 

travelling

 

proportion

 

temperatures

 

atmospheric


abstracted

 
pressures
 

degrees

 

Fahrenheit

 

determined

 

volumes

 

greater

 

expanded

 
expended
 
expansion