FREE BOOKS

Author's List




PREV.   NEXT  
|<   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99  
100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   >>   >|  
loyed a spring formed of a great number of discs of India rubber to keep the roller against the cam, but a few brass discs require to be interposed to prevent the India rubber discs from being worn in the central hole. 202. _Q._--May not the percussion incident to the action of a cam at a high speed, when the roller is not kept up to the face by springs, be obviated by giving a suitable configuration to the cam itself? _A._--It may at all events be reduced. The outline of the cam should be a parabola, so that the valve may be set in motion precisely as a falling body would be; but it will, nevertheless, be necessary that the roller on which the cam presses should be forced upward by a spring rather than by a counterweight, as there will thus be less inertia or momentum in the mass that has to be moved. 203. _Q._--An additional slide valve is sometimes used for cutting off the steam? _A._--Yes, very frequently; and the slide valve is sometimes on the side or back of the valve casing, and sometimes on the back of the main or distributing valve, and moving with it. 204. _Q._--Are cams used in locomotive engines? _A._--In locomotive engines the use of cams is inadmissible, and other expedients are employed, of which those contrived by Stephenson and by Cabrey operate on the principle of accomplishing the requisite variations of expansion by altering the throw of the slide valve. 205. _Q._--What is Stephenson's arrangement? [Illustration: Fig. 35.] _A._--Stephenson connects the ends of the forward and backward eccentric rods by a link with a curved slot in which a pin upon the end of the valve rod works. By moving this link so as to bring the forward eccentric rod in the same line with the valve rod, the valve receives the motion due to that eccentric; whereas if the backward eccentric rod is brought in a line with the valve rod, the valve gets the motion proper for reversing, and if the link be so placed that the valve rod is midway between the two eccentric rods, the valve will remain nearly stationary. This arrangement, which is now employed extensively, is what is termed "the link motion." It is represented in the annexed figure, fig. 35, where _e_ is the valve rod, which is attached by a pin to an open curved link susceptible of being moved up and down by the bell-crank lever _f''_ _f''_, supported on the centre _g_, and acting on the links _f_, while the valve rod _e_ remains in the same horizontal p
PREV.   NEXT  
|<   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99  
100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   >>   >|  



Top keywords:

eccentric

 
motion
 

Stephenson

 

roller

 

forward

 

arrangement

 

curved

 

rubber

 
backward
 

spring


engines

 

employed

 

locomotive

 

moving

 

accomplishing

 
requisite
 

Illustration

 

principle

 
Cabrey
 

operate


variations

 

connects

 

altering

 

horizontal

 
expansion
 

remains

 

extensively

 

termed

 

stationary

 

represented


annexed

 

susceptible

 
attached
 
figure
 

remain

 

receives

 

acting

 

brought

 

midway

 

reversing


supported

 
proper
 

centre

 

springs

 

obviated

 

giving

 

suitable

 

configuration

 
parabola
 
precisely