FREE BOOKS

Author's List




PREV.   NEXT  
|<   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48  
49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   >>   >|  
That will depend upon the velocity. When the pressure exceeds 800 lbs. per square inch, however, upon the section of the bearing in a direction parallel with the axis, then the oil will be forced out and the bearing will necessarily heat. 60. _Q._--But, with, a given velocity, can you tell the limit of pressure which will be safe in practice; or with a given pressure, can you tell the limit of velocity? _A._--Yes; that may be done by the following empirical rule, which has been derived from observations made upon bearings of different sizes and moving with different velocities. Divide the number 70,000 by the velocity of the surface of the bearing in feet per minute. The quotient will be the number of pounds per square inch of section in the line of the axis that may be put upon the bearing. Or, if we divide 70,000 by the number of pounds per square inch of section, then the quotient will be the velocity in feet per minute at which the circumference of the bearing may work. 61. _Q._--The number of square inches upon which the pressure is reckoned, is not the circumference of the bearing multiplied by its length, but the diameter of the bearing multiplied by its length? _A._--Precisely so, it will be the diameter multiplied by the length of the bearing. 62. _Q._--What is the amount of friction in the case of surfaces sliding upon one another in sandy or muddy water--such surfaces, for example, as are to be found in the sluices of valves for water? _A._--Various experiments have been made by Mr. Summers of Southampton to ascertain the friction of brass surfaces sliding upon each other in salt water, with the view of finding the power required for moving sluice doors for lock gates and for other similar purposes. The surfaces were planed as true and smooth as the planing machine would make them, but were _not_ filed or scraped, and the result was as follows: Area of Slide Weight or Pressure on Power required to move the rubbing rubbing Surface. Slide _slowly_ in muddy Surface. Salt Water, kept stirred up. Sq. in. Lb. Lb. 8 56 21.5 " 112 44. " 168 65.5 " 224 88.5 " 336
PREV.   NEXT  
|<   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48  
49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   >>   >|  



Top keywords:

bearing

 
velocity
 

number

 

square

 

pressure

 

surfaces

 
length
 

multiplied

 

section

 
minute

quotient

 
Surface
 

rubbing

 

moving

 
circumference
 
sliding
 
required
 

friction

 

diameter

 
pounds

purposes

 

Southampton

 

planed

 

similar

 

Summers

 

planing

 

smooth

 
finding
 

sluice

 

ascertain


slowly
 
stirred
 
Pressure
 

Weight

 

scraped

 
result
 
machine
 

bearings

 

observations

 

derived


velocities

 
Divide
 

surface

 

empirical

 

forced

 

necessarily

 

practice

 
direction
 

parallel

 
divide