FREE BOOKS

Author's List




PREV.   NEXT  
|<   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74  
75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   >>   >|  
nsists of a cylindrical boiler filled with brass tubes, through which the hot air passes on its progress from the furnace to the chimney, and attached to the boiler are two horizontal cylinders fitted with pistons, valves, connecting rods, and other necessary apparatus to enable the power exerted by the pistons to turn round the cranked axle to which the driving wheels are attached. There are, therefore, two independent engines entering into the composition of a locomotive, the cranks of which are set at right angles with one another, so that when one crank is at its dead point, the other crank is in a position to act with its maximum efficacy. The driving wheels, which are fixed on the crank shaft and turn round with it, propel the locomotive forward on the rails by the mere adhesion of friction, and this is found sufficient not merely to move the locomotive, but to draw a long train of carriages behind it. 130. _Q._--Are locomotive engines condensing or high pressure engines. _A._--They are invariably high pressure engines, and it would be impossible or at least highly inconvenient, to carry the water necessary for the purpose of condensation. The steam, therefore, after it has urged the piston to the end of the stroke, escapes into the atmosphere. In locomotive engines the waste steam is always discharged into the chimney through a vertical pipe, and by its rapid passage it greatly increases the intensity of the draught in the chimney, whereby a smaller fire grate suffices for the combustion of the fuel, and the evaporative power of the boiler is much increased. 131. _Q._--Can you give an example of a good locomotive engine of the usual form? _A._--To do this I will take the example of one of Hawthorn's locomotive engines with six wheels represented in fig. 29; not one of the most modern construction now in use, nor yet one of the most antiquated. M is the cylinder, R the connecting rod, C C the eccentrics by which the slide valve is moved; J J is the steam pipe by which the steam is conducted from the steam dome of the boiler to the cylinder. Near the smoke stack end of this pipe is a valve K or regulator moved by a handle _p_ at the front of the boiler, and of which the purpose is to regulate the admission of the steam to the cylinder; _f_ is a safety valve kept closed by springs; N is the eduction pipe, or, as it is commonly termed in locomotives, the _blast pipe_, by which the steam, escaping from the cyli
PREV.   NEXT  
|<   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74  
75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   >>   >|  



Top keywords:

locomotive

 
engines
 

boiler

 

wheels

 

cylinder

 

chimney

 
pressure
 

purpose

 

driving

 
connecting

attached

 
pistons
 

termed

 

engine

 
increased
 
eduction
 
commonly
 

locomotives

 

draught

 
intensity

increases

 

passage

 

greatly

 

smaller

 

evaporative

 

combustion

 

suffices

 
escaping
 

springs

 

eccentrics


regulate
 
admission
 
safety
 

conducted

 

handle

 
antiquated
 
represented
 

regulator

 

Hawthorn

 

modern


closed

 
construction
 

invariably

 

angles

 

cranks

 

independent

 

entering

 
composition
 

efficacy

 
maximum