FREE BOOKS

Author's List




PREV.   NEXT  
|<   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40  
41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   >>   >|  
dulum required. Thus if the length of a pendulum were required that would make 70 vibrations per minute in the latitude of London, then SQRT(39.1393) x 60/70 = (5.363)^2 = 28.75 in. which is the length required. 37. _Q._--Can you explain how it comes that the length of a pendulum determines the number of vibrations it makes in a given time? _A._--Because the length of the pendulum determines the steepness of the circle in which the body moves, and it is obvious, that a body will descend more rapidly over a steep inclined plane, or a steep arc of a circle, than over one in which there is but a slight inclination. The impelling force is gravity, which urges the body with a force proportionate to the distance descended, and if the velocity due to the descent of a body through a given height be spread over a great horizontal distance, the speed of the body must be slow in proportion to the greatness of that distance. It is clear, therefore, that as the length of the pendulum determines the steepness of the arc, it must also determine the velocity of vibration. 38. _Q._--If the motions of a pendulum be dependent on the speed with which a body falls, then a certain ratio must subsist between the distance through which a body falls in a second, and the length of the second's pendulum? _A._--And so there is; the length of the second's pendulum at the level of the sea in London, is 39.1393 inches, and it is from the length of the second's pendulum that the space through which a body falls in a second has been determined. As the time in which a pendulum vibrates is to the time in which a heavy body falls through half the length of the pendulum, as the circumference of a circle is to its diameter, and as the height through which a body falls is as the square of the time of falling, it is clear that the height through which a body will fall, during the vibration of a pendulum, is to half the length of the pendulum as the square of the circumference of a circle is to the square of its diameter; namely, as 9.8696 is to 1, or it is to the whole length of the pendulum as the half of this, namely, 4.9348 is to 1; and 4.9348 times 39.1393 in. is 16-1/12 ft. very nearly, which is the space through which a body falls by gravity in a second. 39. _Q._--Are the motions of the conical pendulum or governor reducible to the same laws which apply to the common pendulum? _A._--Yes; the motion of the conical pendulum may be supposed to b
PREV.   NEXT  
|<   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40  
41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   >>   >|  



Top keywords:

pendulum

 
length
 

distance

 

circle

 

height

 

square

 
required
 

determines

 

gravity


vibration
 

diameter

 
conical
 

circumference

 

motions

 
velocity
 
steepness
 
London
 

vibrations


minute

 
falling
 

vibrates

 

inches

 

determined

 

latitude

 

reducible

 

governor

 

common


supposed
 

motion

 

number

 
impelling
 
proportionate
 
descended
 

explain

 

inclination

 
slight

inclined
 

rapidly

 

descend

 

Because

 

descent

 
determine
 

obvious

 

dependent

 

horizontal


spread

 

greatness

 
proportion
 

subsist