FREE BOOKS

Author's List




PREV.   NEXT  
|<   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106  
107   108   109   110   111   112   113   114   115   116   117   118   >>  
so necessitate a very high undercarriage to keep the propeller off the ground, and such undercarriage would not only produce excessive drift, but would also tend to make the aeroplane stand on its nose when alighting. The latter difficulty cannot be overcome by mounting the propeller higher, as the centre of its thrust must be approximately coincident with the centre of aeroplane drift. MAINTENANCE OF EFFICIENCY. The following conditions must be observed: 1. PITCH ANGLE.--The angle, at any given point on the propeller, at which the blade is set is known as the pitch angle, and it must be correct to half a degree if reasonable efficiency is to be maintained. This angle secures the "pitch," which is the distance the propeller advances during one revolution, supposing the air to be solid. The air, as a matter of fact, gives back to the thrust of the blades just as the pebbles slip back as one ascends a shingle beach. Such "give-back" is known as _Slip_. If a propeller has a pitch of, say, 10 feet, but actually advances, say, only 8 feet owing to slip, then it will be said to possess 20 per cent. slip. Thus, the pitch must equal the flying speed of the aeroplane plus the slip of the propeller. For example, let us find the pitch of a propeller, given the following conditions: Flying speed ... 70 miles per hour. Propeller revolutions ... 1,200 per minute. Slip ... 15 per cent. First find the distance in feet the aeroplane will travel forward in one minute. That is-- 369,600 feet (70 miles) ----------------------- = 6,160 feet per minute. 60 " (minutes) Now divide the feet per minute by the propeller revolutions per minute, add 15 per cent. for the slip, and the result will be the propeller pitch: 6,160 ----- + 15 per cent. = 5.903 feet. 1,200 In order to secure a constant pitch from root to tip of blade, the pitch angle decreases towards the tip. This is necessary, since the end of the blade travels faster than its root, and yet must advance forward at the same speed as the rest of the propeller. For example, two men ascending a hill. One prefers to walk fast and the other slowly, but they wish to arrive at the top of the hill simultaneously. Then the fast walker must travel a farther distance than the slow one, and his angle of path (pitch angle) must then be smaller than the angle of path taken by the slow walker. Their pitch angle
PREV.   NEXT  
|<   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106  
107   108   109   110   111   112   113   114   115   116   117   118   >>  



Top keywords:

propeller

 
minute
 
aeroplane
 

distance

 
travel
 
forward
 
conditions
 

advances

 

revolutions

 

walker


thrust
 

centre

 

undercarriage

 

divide

 
Flying
 
Propeller
 

minutes

 

slowly

 

prefers

 
ascending

arrive
 

smaller

 

farther

 

simultaneously

 
constant
 

decreases

 

secure

 
advance
 

faster

 
travels

result
 

higher

 

approximately

 

coincident

 

mounting

 
overcome
 

difficulty

 

MAINTENANCE

 

observed

 
EFFICIENCY

alighting

 

ground

 

necessitate

 

produce

 
excessive
 

correct

 

shingle

 
flying
 

possess

 

ascends