FREE BOOKS

Author's List




PREV.   NEXT  
|<   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161  
162   163   164   165   166   167   168   169   170   171   172   173   174   175   176   177   178   179   180   181   182   183   184   185   186   >>   >|  
d, and Huxley was able to contrast them, or at least to show how necessary the new embryological method was as a corrective and a supplement to the older anatomical, or, as he calls it, "gradation" method. Applied to the "Theory of the Skull," the gradation method consists in comparing the parts of the skull and vertebral column in adult animals with respect to their form and connections. "Using the other method, the investigator traces back skull and vertebral column to their earliest embryonic states and determines the identity of parts by their developmental relations" (p. 541). This second method is the final and ultimate. "The study of the gradations of structure presented by a series of living beings may have the utmost value in suggesting homologies, but the study of development alone can finally demonstrate them" (p. 541). As an example of the utility and, indeed, the necessity of applying the embryological method Huxley takes the case of the quadrate bone in birds. This bone had been generally regarded by anatomists as the equivalent of the tympanic of mammals, on account of its connection with the tympanum; but Reichert showed (1837) that the same segment of the first visceral arch developed into the incus in mammals, and into the quadrate in birds, and that therefore the quadrate was homologous with the incus. Similarly, on developmental grounds, the malleus or hammer of mammals is the homologue of the articular of birds, since both are developed from a portion of Meckel's cartilage identical in form and connections in the two groups. The homologies of the bones connected with the jaws in bony fishes had long been a subject of contention among comparative anatomists; Huxley shows from his personal observations how the development of the visceral arches throws light upon these difficulties. The mandibular arch in the developing fish is abruptly angled, as in the embryo of Tetrapoda; the upper prong of it ossifies into the palatine and pterygoid; at the angle is formed the quadrate (jugal, Cuvier), and to the quadrate is articulated the lower jaw, which ossifies round the lower prong or Meckel's cartilage. The scheme of development of the jaws is accordingly similar in fish to what it is in other Vertebrates, and this similarity of development enables Huxley to recognise what are the true homologues of the quadrate, the palatine and the pterygoid in adult bony fish, and to prove that the symplectic and the metapt
PREV.   NEXT  
|<   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161  
162   163   164   165   166   167   168   169   170   171   172   173   174   175   176   177   178   179   180   181   182   183   184   185   186   >>   >|  



Top keywords:

quadrate

 
method
 

development

 

Huxley

 

mammals

 

pterygoid

 

palatine

 

ossifies

 
developmental
 

anatomists


homologies

 

Meckel

 

cartilage

 

vertebral

 

column

 
developed
 

gradation

 

embryological

 
visceral
 

connections


fishes

 

grounds

 

contention

 

subject

 
comparative
 

groups

 

identical

 

articular

 

portion

 

connected


hammer

 

homologue

 
malleus
 
developing
 

scheme

 

similar

 

Cuvier

 

articulated

 

Vertebrates

 

symplectic


metapt

 
homologues
 

similarity

 

enables

 

recognise

 

formed

 

difficulties

 

throws

 
personal
 
observations