FREE BOOKS

Author's List




PREV.   NEXT  
|<   154   155   156   157   158   159   160   161   162   163   164   165   166   167   168   169   170   171   172   173   174   175   176   177   178  
179   180   181   182   183   184   185   186   187   188   189   190   191   192   193   194   195   196   197   198   199   200   201   202   203   >>   >|  
um was or was not a cell. It happened that, some years before Schwann wrote, a good deal of work had been done on the minute structure of the ovum, particularly by Purkinje and von Baer. Purkinje in 1825[252] discovered and described in the unfertilised egg of the fowl a small vesicle containing granular matter, which he named the _Keimblaeschen_ or germinal vesicle. It disappeared in the fertilised egg. As early as 1791 Poli had seen the germinal vesicle in the eggs of molluscs, but the first adequate account was given by Purkinje. In 1827[253] von Baer discovered the true ova of mammals and cleared up a point which had been a stumbling block ever since the days of von Graaf, who had described as the ova the follicles now bearing his name.[254] Even von Graaf had noticed that the early uterine eggs were smaller than the supposed ovarian eggs; Prevost and Dumas[255] had observed the presence in the Graafian follicle of a minute spherical body, which, however, they hesitated to call the ovum; it was left to von Baer to elucidate the structure of the follicle and to prove that this small sphere was indeed the mammalian ovum. His discovery was confirmed by Sharpey and by Allen Thomson. Von Baer found the germinal vesicle in the eggs of frogs, snakes, molluscs, and worms, but not in the mammalian ovum; he considered the whole mammalian ovum to be the equivalent of the germinal vesicle of birds--a comparison rightly questioned by Purkinje (1834). In 1834 Coste[256] discovered in the ovum of the rabbit a vesicle which he considered to be the germinal vesicle of Purkinje; he observed that it disappeared after fertilisation. Independently of Coste, and very little time after him, Wharton Jones[257] found the germinal vesicle in the mammalian ovum. Valentin in 1835,[258] Wagner in 1836,[259] and Krause in 1837,[260] added considerably to the existing knowledge of the structure of the ovum. Wagner in his _Prodromus_ called attention to the widespread occurrence, within the germinal vesicle of a darker speck which he called the _Keimfleck_ or germinal spot, known sometimes as Wagner's spot. He recognised the _Keimfleck_ in the ova of many classes of animals from mammals to polyps. Frequently more than one _Keimfleck_ occurred. Schwann had therefore a good deal of exact knowledge to go upon in discussing the significance of the ovum for the cell-theory. There were two possible interpretations. Either the ovum was a cell and the ge
PREV.   NEXT  
|<   154   155   156   157   158   159   160   161   162   163   164   165   166   167   168   169   170   171   172   173   174   175   176   177   178  
179   180   181   182   183   184   185   186   187   188   189   190   191   192   193   194   195   196   197   198   199   200   201   202   203   >>   >|  



Top keywords:

vesicle

 

germinal

 
Purkinje
 
mammalian
 

structure

 
discovered
 

Keimfleck

 
Wagner
 
disappeared
 

observed


mammals
 
called
 

molluscs

 

follicle

 
considered
 

minute

 
Schwann
 

knowledge

 

Krause

 

Valentin


fertilisation

 

rightly

 

questioned

 

equivalent

 

comparison

 

rabbit

 

Independently

 

snakes

 
Wharton
 

occurred


Frequently

 
discussing
 

significance

 

interpretations

 

Either

 

theory

 

polyps

 

widespread

 

occurrence

 

attention


Prodromus

 

considerably

 

existing

 

darker

 

classes

 
animals
 
recognised
 

presence

 

adequate

 

account