FREE BOOKS

Author's List




PREV.   NEXT  
|<   163   164   165   166   167   168   169   170   171   172   173   174   175   176   177   178   179   180   181   182   183   184   185   186   187  
188   189   190   191   192   193   194   195   196   197   198   199   200   201   202   203   204   205   206   207   208   209   210   211   212   >>   >|  
metabolic power of the cells, (2) the reason why the cells arrange themselves so as to form an organism of complex and definite structure. Schwann tries to explain the origin of the "metabolic" action, the analogy of which with the contact-action of colloidal platinum he recognises, by attributing it to the peculiar structural arrangements of molecules. In attempting to account for the harmonious structure of the organism he points to the analogy of ordinary crystals, which often form complex and regular tree-like arrangements; plants in particular resemble these regularly shaped crystal-aggregates. The whole ingenious theory is offered merely as an hypothesis and a guide to research. It is interesting as one of the most carefully thought-out attempts ever made to give a thorough-going materialistic account of the origin and development of organic form, and it arose directly out of the cell-theory. Schleiden and Schwann started out from an erroneous theory of the origin and development of cells, which impaired to some extent the value of their results. It was not long, however, before their theory of the origin of cells by "crystallisation" from an intra- or extra-cellular cytoblastem was challenged and overthrown, and the generalisation that cells originate by division from pre-existing cells put in its place. This was established for plant cells by Meyen, Unger, von Mohl, Naegeli and Hofmeister in or about the forties.[261] Criticism of the Schwann-Schleiden theory from the zoological side was suggested by the study of the segmentation of the ovum--the developmental process in which the multiplication of cells is most easily observed. The segmentation of the ovum was well known to Schwann, for the process had been described in the frog by Prevost and Dumas in 1824,[262] in the frog and newt by Rusconi,[263] and an elaborate study of the process in the frog had been made by von Baer.[264] Schwann indeed suspected that there must be some connection between the segmentation of the ovum and the formation of cells, but he did not realise that the cellular blastoderm of the chick was formed by the division or segmentation of the egg-cell. Segmentation was soon found to be of widespread occurrence. Von Siebold in 1837 described the process in Entozoa,[265] and in the same year Loven saw segmentation in _Campanularia_,[266] and Sars in the starfish and in Nudibranchs.[267] In 1838 Bischoff[268] observed segmentation
PREV.   NEXT  
|<   163   164   165   166   167   168   169   170   171   172   173   174   175   176   177   178   179   180   181   182   183   184   185   186   187  
188   189   190   191   192   193   194   195   196   197   198   199   200   201   202   203   204   205   206   207   208   209   210   211   212   >>   >|  



Top keywords:

segmentation

 

theory

 
Schwann
 
process
 

origin

 
development
 

observed

 
division
 
Schleiden
 

cellular


structure
 
account
 

complex

 

organism

 
action
 

metabolic

 
arrangements
 

analogy

 

reason

 

elaborate


Rusconi

 

Prevost

 

multiplication

 

forties

 

Criticism

 

Hofmeister

 

definite

 

Naegeli

 
zoological
 

easily


arrange

 
developmental
 

suggested

 

Siebold

 

Entozoa

 

Campanularia

 

Bischoff

 

Nudibranchs

 

starfish

 

occurrence


formation

 

connection

 

suspected

 

realise

 

blastoderm

 
widespread
 
Segmentation
 

formed

 

interesting

 

structural