FREE BOOKS

Author's List




PREV.   NEXT  
|<   155   156   157   158   159   160   161   162   163   164   165   166   167   168   169   170   171   172   173   174   175   176   177   178   179  
180   181   182   183   184   185   186   187   188   189   190   191   192   193   194   195   196   197   198   199   200   201   202   203   204   >>   >|  
rminal vesicle its nucleus, or else the germinal vesicle was itself a cell within the larger cell of the ovum and the germinal spot was its nucleus. Schwann had some difficulty in deciding which of these views to adopt, but he finally inclined to the view that the ovum is a cell and the germinal vesicle its nucleus, basing his opinion largely upon observations by Wagner which tended to prove that the germinal vesicle was formed first and the ovum subsequently formed round it. But the ovum was not, in Schwann's view, a simple cell, for within it were contained yolk-granules, one set apparently containing a nucleus, the others not. Even the second set, those composing the yellow yolk, were considered by Schwann to deserve the name of cells, because, although a nucleus could not be observed in them, they had a definite membrane, distinct from their contents--a conception of the cell obviously dating from the earliest botanical notions of cells as little sacs. The yolk cells were not mere dead food material but living units which took part in the subsequent development of the egg. The relation between the unfertilised egg and the blastoderm which arises from it is not made altogether clear by Schwann. According to his account the cells of the blastoderm are formed actually in the ovum. Round the nucleus of the egg appears a _Niederschlag_ or precipitate which is the rudiment of the blastoderm (p. 68). When the egg leaves the ovary the nucleus disappears, leaving behind it this rudiment of the blastoderm, which rapidly grows and increases in size. The blastoderm of the chick before incubation is found to be composed of spherical anucleate bodies which Schwann considers to be cells, because they almost certainly develop into the cells of the incubated blastoderm, which are clearly recognisable as such after eight hours' incubation. The serous and mucous layers can be distinguished after sixteen hours' incubation, and it is found that the cells of the serous layer contain definite nuclei, though such seem to be absent in the cells of the mucous layer. Between the two layers other cells are formed belonging to the vessel layer, which is, however, in Schwann's opinion not a very definitely individualised layer. Schwann's next step is a detailed demonstration of the origin of each tissue from simple cells such as those composing the incubated blastoderm. "The foregoing investigation has taught us that the whole ovum shows noth
PREV.   NEXT  
|<   155   156   157   158   159   160   161   162   163   164   165   166   167   168   169   170   171   172   173   174   175   176   177   178   179  
180   181   182   183   184   185   186   187   188   189   190   191   192   193   194   195   196   197   198   199   200   201   202   203   204   >>   >|  



Top keywords:

Schwann

 

blastoderm

 
nucleus
 
formed
 

germinal

 
vesicle
 

incubation

 
serous
 
mucous
 

layers


composing
 
rudiment
 

incubated

 

definite

 
simple
 

opinion

 
increases
 

rapidly

 

composed

 

spherical


bodies

 

considers

 

anucleate

 

precipitate

 

Niederschlag

 

appears

 

detailed

 

leaving

 
disappears
 

leaves


develop

 
distinguished
 

sixteen

 

investigation

 

origin

 

Between

 

absent

 

foregoing

 

nuclei

 

belonging


individualised

 

tissue

 

recognisable

 

vessel

 

taught

 
demonstration
 
contained
 

subsequently

 

tended

 

granules