FREE BOOKS

Author's List




PREV.   NEXT  
|<   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49  
50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   >>   >|  
he charge. The operation was accomplished simply enough by plunging the gunner's pick into the vent far enough to pierce the bag. Then the vent was primed with loose powder from the gunner's flask. The vent prime, which was not much improved until the nineteenth century, was a trick learned from the fourteenth century Venetians. There were numerous tries for improvement, such as the powder-filled tin tube of the 1700's, the point of which pierced the powder bag. But for all of them, the slow match had to be used to start the fire train. [Illustration: Figure 18--LINSTOCKS.] Before 1800, the slow match was in universal use for setting off the charge. The match was usually a 3-strand cotton rope, soaked in a solution of saltpeter and otherwise chemically treated with lead acetate and lye to burn very slowly--about 4 or 5 inches an hour. It was attached to a linstock (fig. 18), a forked stick long enough to keep the cannoneer out of the way of the recoil. Chemistry advances, like the isolation of mercury fulminate in 1800, led to the invention of the percussion cap and other primers. On many a battleground you may have picked up a scrap of twisted wire--the loop of a friction primer. The device was a copper tube (fig. 19) filled with powder. The tube went into the vent of the cannon and buried its tip in the powder charge. Near the top of this tube was soldered a "spur"--a short tube containing a friction composition (antimony sulphide and potassium chlorate). Lying in the composition was the roughened end of a wire "slider." The other end of the slider was twisted into a loop for hooking to the gunner's lanyard. It was like striking a match: a smart pull on the lanyard, and the rough slider ignited the composition. Then the powder in the long tube began to burn and fired the charge in the cannon. Needless to say, it happened faster than we can tell it! [Illustration: Figure 19--FRICTION PRIMER.] The percussion primer was even more simple: a "quill tube," filled with fine powder, fitted into the vent. A fulminate cap was glued to the top of the tube. A pull of the lanyard caused the hammer of the cannon to strike the cap (just like a little boy's cap pistol) and start the train of explosions. Because the early methods of priming left the vent open when the cannon fired, the little hole tended to enlarge. Many cannon during the 1800's were made with two vents, side by side. When the first one wore out, it was
PREV.   NEXT  
|<   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49  
50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   >>   >|  



Top keywords:

powder

 

cannon

 
charge
 

lanyard

 

composition

 

filled

 

gunner

 

slider

 

Figure

 

Illustration


primer
 
friction
 
twisted
 

percussion

 

fulminate

 

century

 
roughened
 

soldered

 

hooking

 

striking


buried
 

sulphide

 

antimony

 

device

 

copper

 

potassium

 

chlorate

 

FRICTION

 

priming

 

methods


pistol
 

explosions

 

Because

 

tended

 

enlarge

 

strike

 

faster

 

happened

 

ignited

 

Needless


picked
 

fitted

 

caused

 

hammer

 

PRIMER

 
simple
 

pierced

 

numerous

 

improvement

 

Before