FREE BOOKS

Author's List




PREV.   NEXT  
|<   224   225   226   227   228   229   230   231   232   233   234   235   236   237   238   239   240   241   242   243   244   245   246   247   248  
249   250   251   252   253   254   255   256   257   258   259   260   261   262   263   264   265   266   267   268   269   270   271   272   273   >>   >|  
-resistance shunt that is placed across the line by the instrument that is in use, it is obvious that, in the case of a long line, the resistance of the line wire will enter into the problem in such a way as to tend to defeat the locking-out function in some cases. Thus, where the first instrument to use the line is at the remote end of the line, the shunting effect that this instrument can exert with respect to another instrument near the central office is that due to the resistance of the line plus the resistance of the holding coil at the end instrument. The resistance of the line wire may be so high as to still allow a sufficient current to flow through the high-resistance coil at the nearer station to allow its operation, even though the more remote instrument is already in use. Coming now to a consideration of the complete selective-signaling lock-out systems, wherein the selection of the party and the locking out of the others are both inherent features, a single example of the step-by-step, and of the broken-line selective lock-out systems will be discussed. Step-by-Step System. The so-called K.B. system, manufactured by the Dayton Telephone Lock-out Manufacturing Company of Dayton, Ohio, operates on the step-by-step principle. The essential feature of the subscriber's telephone equipment in this system is the step-by-step actuating mechanism which performs also the functions of a relay. This device consists of an electromagnet having two cores, with a permanent polarizing magnet therebetween, the arrangement in this respect being the same as in an ordinary polarized bell. The armature of this magnet works a rocker arm, which, besides stepping the selector segment around, also, under certain conditions, closes the bell circuit and the talking circuit, as will be described. [Illustration: Fig. 189. K.B. Lock-Out System] Referring first to Fig. 189, which shows in simplified form a four-station K.B. lock-out line, the electromagnet is shown at _1_ and the rocker arm at _2_. The ratchet _3_ in this case is not a complete wheel but rather a segment thereof, and it is provided with a series of notches of different depths. It is obvious that the depth of the notches will determine the degree of movement which the upper end of the rocker arm may have toward the left, this being dependent on the extent to which the pawl _6_ is permitted to enter into the segment. The first or normal notch, _i.e._, the top notch,
PREV.   NEXT  
|<   224   225   226   227   228   229   230   231   232   233   234   235   236   237   238   239   240   241   242   243   244   245   246   247   248  
249   250   251   252   253   254   255   256   257   258   259   260   261   262   263   264   265   266   267   268   269   270   271   272   273   >>   >|  



Top keywords:

instrument

 

resistance

 

segment

 

rocker

 

station

 

Dayton

 
system
 
notches
 

circuit

 

obvious


systems

 

System

 

complete

 

selective

 

respect

 

magnet

 

remote

 

electromagnet

 

locking

 
polarizing

closes

 

talking

 

permanent

 

conditions

 

arrangement

 

ordinary

 

armature

 

polarized

 
stepping
 

selector


therebetween

 

movement

 

degree

 

determine

 

dependent

 
extent
 

normal

 

permitted

 

depths

 

simplified


Referring

 
ratchet
 

thereof

 

provided

 

series

 

Illustration

 
current
 

sufficient

 

holding

 
nearer