FREE BOOKS

Author's List




PREV.   NEXT  
|<   254   255   256   257   258   259   260   261   262   263   264   265   266   267   268   269   270   271   272   273   274   275   276   277   278  
279   280   281   282   283   284   285   286   287   288   289   290   291   292   293   294   295   296   297   298   299   300   301   302   303   >>   >|  
not broken at all, but merely grounded. Each method has its advantages. Complete Line Protection. Fig. 225 shows the entire scheme of protectors in an exposed line and their relation to apparatus in the central-office equipment and at the subscriber's telephone. The central-office equipment contains heat coils, springs, and carbon arresters. At some point between the central office and the subscriber's premises, each wire contains a fuse. At the subscriber's premises each wire contains other fuses and these are associated with carbon arresters. The figure shows a central battery equipment, in which the ringer of the telephone is in series with a condenser. A sneak-current arrester is not required at the subscriber's station with such equipment. Assume the line to meet an electrical hazard at the point _X_. If this be lightning, it will discharge to ground at the central office or at the subscriber's instrument or at both through the carbon arresters connected to that side of the line. If it be a high potential from a power circuit and of more than 350 volts, it will strike an arc at the carbon arrester connected to that wire of the line in the central office or at the subscriber's telephone or at both, if the separation of the carbons in those arresters is .005 inch or less. If the carbon arresters are separated by celluloid, it will burn away and allow the carbons to come together, extinguishing the arc. If they are separated by mica and one of the carbons is equipped with a globule of low-melting alloy, the heat of the arc will melt this, short-circuiting the gap and extinguishing the arc. The passage of current to ground at the arrester, however, will be over a path containing nothing but wire and the arrester. The resulting current, therefore, may be very large. The voltage at the arrester having been 350 volts or more, in order to establish the arc, short-circuiting the gap will make the current 7 amperes or more, unless the applied voltage miraculously falls to 50 volts or less. The current through the fuse being more than 7 amperes, it will blow promptly, opening the line and isolating the apparatus. It will be noted that this explanation applies to equipment at either end of the line, as the fuse lies between the point of contact and the carbon arrester. [Illustration: Fig. 225. Complete Line Protection] Assume, on the other hand, that the contact is made at the point _Y_. The central-office carbon arre
PREV.   NEXT  
|<   254   255   256   257   258   259   260   261   262   263   264   265   266   267   268   269   270   271   272   273   274   275   276   277   278  
279   280   281   282   283   284   285   286   287   288   289   290   291   292   293   294   295   296   297   298   299   300   301   302   303   >>   >|  



Top keywords:

central

 

carbon

 
office
 

subscriber

 
arrester
 

current

 

equipment

 
arresters
 

telephone

 

carbons


Assume

 

ground

 

circuiting

 
voltage
 

contact

 

amperes

 
extinguishing
 

separated

 

connected

 

premises


Complete
 

apparatus

 
Protection
 
resulting
 

advantages

 
melting
 

globule

 

equipped

 

passage

 

explanation


applies

 

Illustration

 

applied

 
miraculously
 

method

 

opening

 

isolating

 

promptly

 

establish

 

springs


hazard

 

electrical

 
lightning
 

instrument

 

relation

 

broken

 

discharge

 

battery

 

figure

 
ringer