FREE BOOKS

Author's List




PREV.   NEXT  
|<   293   294   295   296   297   298   299   300   301   302   303   304   305   306   307   308   309   310   311   312   313   314   315   316   317  
318   319   320   321   322   323   324   325   326   327   328   329   >>  
h _3_ adapted to be manually operated is connected in the circuit with the battery and the buzzer so as to open this circuit when the night alarm is not needed, thus making it inoperative. During the portions of the day when the operator is needed constantly at the board it is customary to leave this switch _3_ open, but during the night period when she is not required constantly at the board this switch is closed so that an audible signal will be given whenever a drop falls. The night-alarm contact _4_ on each of the drops will be closed whenever a shutter falls, and as the two members of this contact, in the case of each drop, are connected respectively with the two sides of the night-alarm circuit, any one shutter falling will complete the necessary conditions for causing the buzzer to sound, assuming of course that the switch _3_ is closed. _Night Alarm with Relay._ A good deal of trouble has been caused in the past by uncertainty in the closure of the night-alarm circuit at the drop contact. Some of the companies have employed the form of circuit shown in Fig. 275 to overcome this. Instead of the night-alarm buzzer being placed directly in the circuit that is closed by the drop, a relay _5_ and a high-voltage battery _6_ are placed in this circuit. The buzzer and the battery for operating it are placed in a local circuit controlled by this relay. It will be seen by reference to Fig. 275 that when the shutter falls, it will, by closing the contact _4_, complete the circuit from the battery _6_ through the relay _5_--assuming switch _3_ to be closed--and thus cause the operation of the relay. The relay, in turn, by pulling up its armature, will close the circuit of the buzzer _2_ through the battery _7_ and cause the buzzer to sound. [Illustration: Fig. 275. Night-Alarm Circuit with Relay] The advantage of this method over the direct method of operating the buzzer is that any imperfection in the night-alarm contact at the drop is much less likely to prevent the flow of current of the high-voltage battery _6_ than of the low-voltage battery _1_, shown in connection with Fig. 274. This is because the higher voltage is much more likely to break down any very thin bit of insulation, such as might be caused by a minute particle of dust or oxide between contacts that are supposed to be closed by the falling of the shutter. It has been common to employ for battery _6_ a dry-cell battery giving about 20 or 24 volts, a
PREV.   NEXT  
|<   293   294   295   296   297   298   299   300   301   302   303   304   305   306   307   308   309   310   311   312   313   314   315   316   317  
318   319   320   321   322   323   324   325   326   327   328   329   >>  



Top keywords:

circuit

 

battery

 
buzzer
 

closed

 

contact

 
switch
 
shutter
 
voltage
 

falling

 

assuming


complete
 

method

 

operating

 
caused
 
needed
 
constantly
 
connected
 

current

 

prevent

 
adapted

connection

 

manually

 

direct

 

Circuit

 

Illustration

 
advantage
 

armature

 

operated

 

imperfection

 

common


employ

 

supposed

 
contacts
 

giving

 

higher

 

minute

 

particle

 
insulation
 

period

 

required


trouble

 

causing

 

members

 

conditions

 

audible

 
signal
 
customary
 

making

 

inoperative

 

During