FREE BOOKS

Author's List




PREV.   NEXT  
|<   252   253   254   255   256   257   258   259   260   261   262   263   264   265   266   267   268   269   270   271   272   273   274   275   276  
277   278   279   280   281   282   283   284   285   286   287   288   289   290   291   292   293   294   295   296   297   298   299   300   301   >>   >|  
ratus and the earlier protective systems depended on such an arrangement. The difficulty with such delicate fuses is that they are not robust enough to be reliable, and, worse still, they change their carrying capacity with age and are not uniform in operation in different surroundings and at different temperatures. They are also sensitive to lightning discharges, which they have no power to stop or to divert. Protection Against Sneak Currents. For these reasons, a system containing fuses and air-gap arresters only, does not protect against abnormal currents which are continuous and small, though large enough to injure apparatus _because_ continuous. These currents have come to be known as sneak currents, a term more descriptive than elegant. Sneak currents though small, may, when allowed to flow for a long time through the winding of an electromagnet for instance, develop enough heat to char or injure the insulation. They are the more dangerous because insidious. [Illustration: Fig. 222. Tubular Fuse with Asbestos Filling] _Sneak-Current Arresters._ As typical of sneak-current arresters, Fig. 223 shows the principle, though not the exact form, of an arrester once widely used in telephone and signal lines. The normal path from the line to the apparatus is through a small coil of fine wire imbedded in sealing wax. A spring forms a branch path from the line and has a tension which would cause it to bear against the ground contact if it were allowed to do so. It is prevented from touching that contact normally by a string between itself and a rigid support. The string is cut at its middle and the knotted ends as thus cut are imbedded in the sealing wax which contains the coil. [Illustration: Fig. 223. Principle of Sneak-Current Arrester] A small current through the little coil will warm the wax enough to allow the string to part. The spring then will ground the line. Even so simple an apparatus as this operates with considerable accuracy. All currents below a certain critical amount may flow through the heating coil indefinitely, the heat being radiated rapidly enough to keep the wax from softening and the string from parting. All currents above this critical amount will operate the arrester; the larger the current, the shorter the time of operating. It will be remembered that the law of these heating effects is that the heat generated = _C^{2}Rt_, so that if a certain current operates the arrester in, say 40 se
PREV.   NEXT  
|<   252   253   254   255   256   257   258   259   260   261   262   263   264   265   266   267   268   269   270   271   272   273   274   275   276  
277   278   279   280   281   282   283   284   285   286   287   288   289   290   291   292   293   294   295   296   297   298   299   300   301   >>   >|  



Top keywords:

currents

 

current

 
string
 

arrester

 
apparatus
 

allowed

 

contact

 
continuous
 

heating

 

amount


injure

 

critical

 

sealing

 
spring
 

operates

 

ground

 
Current
 

imbedded

 

Illustration

 

arresters


difficulty
 

arrangement

 
support
 
Arrester
 

middle

 
knotted
 

Principle

 

change

 

tension

 

reliable


delicate

 

touching

 

prevented

 
robust
 

shorter

 

operating

 

remembered

 

larger

 

operate

 

softening


parting

 

effects

 
generated
 

rapidly

 

considerable

 

accuracy

 

simple

 

depended

 

indefinitely

 
radiated