FREE BOOKS

Author's List




PREV.   NEXT  
|<   244   245   246   247   248   249   250   251   252   253   254   255   256   257   258   259   260   261   262   263   264   265   266   267   268  
269   270   271   272   273   274   275   276   277   278   279   280   281   282   283   284   285   286   287   288   289   290   291   292   293   >>   >|  
his causes current to flow from the cars toward the power stations, the return path being made up jointly of the rails, the earth itself, actual return wires which may supplement the rails, and also all other conducting things in the earth, these being principally lead-covered cables and other pipes. These conditions establish definite areas in which the currents tend to leave the cables and pipes, _i.e._, in which the latter are positive to other things. These positive areas usually are much smaller than the negative areas, that is, the regions in which currents tend _to enter_ the cables form a larger total than the regions in which the currents tend _to leave_ the cables. These facts simplify the ways in which the cables may be protected against damage by direct currents leaving them and also they reduce the amount, complication, and cost of applying the corrective and preventive measures. All electric roads do not use direct current. Certain simplifications in the use of single-phase alternating currents in traction motors have increased the number of roads using a system of alternating-current power supply. Where alternating current is used, the electrolytic conditions are different and a new problem is set, for, as the current flows in recurrently different directions, an area which at one instant is positive to others, is changed the next instant into a negative area. The protective means, therefore, must be adapted to the changed requirements. CHAPTER XIX PROTECTIVE MEANS Any of the heating hazards described in the foregoing chapter may cause currents which will damage apparatus. All devices for the protection of apparatus from such damage, operate either to stop the flow of the dangerous current, or to send that flow over some other path. Protection Against High Potentials. Lightning is the most nearly universal hazard. All open wires are exposed to it in some degree. Damaging currents from lightning are caused by extraordinarily high potentials. Furthermore, a lightning discharge is oscillatory; that is, alternating, and of very high frequency. Drops, ringers, receivers, and other devices subject to lightning damage suffer by having their windings burned by the discharge. The impedance these windings offer to the high frequency of lightning oscillations is great. The impedance of a few turns of heavy wire may be negligible to alternating currents of ordinary frequencies because the resistan
PREV.   NEXT  
|<   244   245   246   247   248   249   250   251   252   253   254   255   256   257   258   259   260   261   262   263   264   265   266   267   268  
269   270   271   272   273   274   275   276   277   278   279   280   281   282   283   284   285   286   287   288   289   290   291   292   293   >>   >|  



Top keywords:

currents

 

current

 
alternating
 

cables

 
lightning
 

damage

 

positive

 
negative
 

frequency

 

changed


regions

 

devices

 

direct

 
apparatus
 

instant

 

discharge

 
impedance
 

things

 

return

 

conditions


windings
 

chapter

 
foregoing
 
negligible
 

subject

 
receivers
 

ringers

 

dangerous

 

operate

 

protection


hazards

 

frequencies

 

adapted

 
requirements
 

ordinary

 

CHAPTER

 

resistan

 

PROTECTIVE

 

heating

 

oscillations


caused

 

extraordinarily

 
Damaging
 

degree

 

potentials

 

oscillatory

 

protective

 

Furthermore

 

exposed

 
Against