FREE BOOKS

Author's List




PREV.   NEXT  
|<   222   223   224   225   226   227   228   229   230   231   232   233   234   235   236   237   238   239   240   241   242   243   244   245   246  
247   248   249   250   251   252   253   254   255   256   257   258   259   260   261   262   263   264   265   266   267   268   269   270   271   >>   >|  
tion: Fig. 188. Poole Lock-Out System] Each of the relays has two windings, one of high resistance and the other of low resistance. Remembering that the system to which this device is applied is always a common-battery system, and that, therefore, the normal condition of the line will be one in which there is a difference of potential between the two limbs, it will be evident that whenever any subscriber on a line that is not in use raises his receiver from its hook, a circuit will be established from the upper contact of the hook through the lever of the hook to the high-resistance winding _1_ of the relay and thence to the other side of the line by way of wire _6_. This will result in current passing through the high-resistance winding of the relay and the relay will pull up its armature. As soon as it does so it establishes two other circuits by the closure of the relay armature against the contacts _4_ and _5_. The closing of the contact _4_ establishes a circuit from the upper side of the line through the upper contact of the switch hook, thence through the contacts of the push button _3_, thence through the low-resistance winding _2_ of the relay to the terminal _4_, thence through the relay armature and the transmitter to the lower side of the line. This low-resistance path across the line serves to hold the relay armature attracted and also to furnish current to the transmitter for talking. The establishment of this low-resistance path across the line does another important thing, however; it practically short-circuits the line with respect to all the high-resistance relay windings, and thus prevents any of the other high-resistance relay windings from receiving enough current to actuate them, should the subscriber at any other station remove his receiver from the hook in an attempt to listen in or to make a call while the line is in use. As a subscriber can only establish the proper conditions for talking and listening by the attraction of this relay armature at his station, it is obvious that unless he can cause the pulling up of his relay armature he can not place himself in communication with the line. The second thing that is accomplished by the pulling up of the relay armature is the closure of the contacts _5_, and that completes the talking circuit through the condenser and receiver across the line in an obvious fashion. The result of this arrangement is that it is the first party who raises his re
PREV.   NEXT  
|<   222   223   224   225   226   227   228   229   230   231   232   233   234   235   236   237   238   239   240   241   242   243   244   245   246  
247   248   249   250   251   252   253   254   255   256   257   258   259   260   261   262   263   264   265   266   267   268   269   270   271   >>   >|  



Top keywords:

resistance

 

armature

 

circuit

 

current

 

receiver

 

subscriber

 
winding
 
contact
 

contacts

 

windings


talking

 

station

 

obvious

 

pulling

 

establishes

 

transmitter

 

closure

 

result

 

circuits

 
system

raises

 

remove

 

System

 

listen

 

attempt

 

respect

 

practically

 

actuate

 
Remembering
 

receiving


prevents

 

proper

 

condenser

 

completes

 

accomplished

 
fashion
 

arrangement

 

communication

 

listening

 

conditions


device

 
establish
 

attraction

 

relays

 

establishment

 

potential

 
difference
 

passing

 

evident

 
condition