FREE BOOKS

Author's List




PREV.   NEXT  
|<   244   245   246   247   248   249   250   251   252   253   254   255   256   257   258   259   260   261   262   263   264   265   266   267   268  
269   270   271   272   273   274   275   276   277   278   279   280   281   282   283   284   285   286   287   288   289   290   291   292   293   >>   >|  
bove the earth's attraction that it is separating itself from the sphere. If this view be correct, it seems likely that we may look to great volcanic explosions as a source whence the dustlike particles which people the celestial spaces may have come. They may, in a word, be due to volcanic explosions occurring on this and other celestial spheres. The question suggested above as to the possibility of volcanic ejections throwing matter from the earth beyond the control of its gravitative energy is one of great scientific interest. Computations (not altogether trustworthy) show that a body leaving the earth's surface under the conditions of a cannon ball fired vertically upward would have to possess a velocity at the start of at least seven miles a second in order to go free into space. It would at first sight seem that we should be able to reckon whether volcanoes can propel earth matter upward with this speed. In fact, however, sufficient data are not obtainable; we only know in a general way that the column of vapour rises to the height of thirty or forty thousand feet, and this in eruptions of no great magnitude. In an accident such as that at Krakatoa, even if an observer were near enough to see clearly what was going on, the chance of his surviving the disturbance would be small. Moreover, the ascending vapours, owing to their expansion of the steam in the column, begin to fly out sideways on its periphery, so that the upper part of the central section in the discharge is not visible from the earth. It is in the central section of the uprushing mass, if anywhere, that the dust might attain the height necessary to put it beyond the earth's attraction, bringing it fairly into the realm of the solar system, or to the position where its own motion and the attraction of the other spheres would give it an independent orbital movement about the sun, or perhaps about the earth. We can only say that observations on the height of volcanic ejections are extremely desirable; they can probably only be made from a balloon. An ascension thus made beyond the cloud disk which the eruption produces might bring the observer where he could discern enough to determine the matter. Although the movements of the rocky particles could not be observed, the colour which they would give to the heavens might tell the story which we wish to know. There is evidence that large masses of stone hurled up by volcanic eruption have fallen seven mi
PREV.   NEXT  
|<   244   245   246   247   248   249   250   251   252   253   254   255   256   257   258   259   260   261   262   263   264   265   266   267   268  
269   270   271   272   273   274   275   276   277   278   279   280   281   282   283   284   285   286   287   288   289   290   291   292   293   >>   >|  



Top keywords:

volcanic

 

height

 
matter
 

attraction

 
upward
 

eruption

 

section

 
column
 

observer

 

central


explosions

 

spheres

 

particles

 
celestial
 

ejections

 

attain

 
motion
 

independent

 

correct

 

position


fairly
 

system

 
bringing
 
visible
 

expansion

 
vapours
 

disturbance

 

Moreover

 

ascending

 

discharge


orbital

 

sideways

 

periphery

 
uprushing
 

colour

 

heavens

 

observed

 

discern

 

determine

 

Although


movements

 

fallen

 
hurled
 

evidence

 

masses

 

observations

 

extremely

 

desirable

 

sphere

 
surviving