FREE BOOKS

Author's List




PREV.   NEXT  
|<   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139  
140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164   >>   >|  
the rate of description of areas is equable. It proves, in fact, that the sun is the attracting body, and that no other force acts. For first of all if the first law of motion is obeyed, _i.e._ if no force acts, and if the path be equally subdivided to represent equal times, and straight lines be drawn from the divisions to any point whatever, all these areas thus enclosed will be equal, because they are triangles on equal base and of the same height (Euclid, I). See Fig. 59; _S_ being any point whatever, and _A_, _B_, _C_, successive positions of a body. Now at each of the successive instants let the body receive a sudden blow in the direction of that same point _S_, sufficient to carry it from _A_ to _D_ in the same time as it would have got to _B_ if left alone. The result will be that there will be a compromise, and it will really arrive at _P_, travelling along the diagonal of the parallelogram _AP_. The area its radius vector sweeps out is therefore _SAP_, instead of what it would have been, _SAB_. But then these two areas are equal, because they are triangles on the same base _AS_, and between the same parallels _BP_, _AS_; for by the parallelogram law _BP_ is parallel to _AD_. Hence the area that would have been described is described, and as all the areas were equal in the case of no force, they remain equal when the body receives a blow at the end of every equal interval of time, _provided_ that every blow is actually directed to _S_, the point to which radii vectores are drawn. [Illustration: FIG. 60.] [Illustration: FIG. 61.] It is instructive to see that it does not hold if the blow is any otherwise directed; for instance, as in Fig. 61, when the blow is along _AE_, the body finds itself at _P_ at the end of the second interval, but the area _SAP_ is by no means equal to _SAB_, and therefore not equal to _SOA_, the area swept out in the first interval. In order to modify Fig. 60 so as to represent continuous motion and steady forces, we have to take the sides of the polygon _OAPQ_, &c., very numerous and very small; in the limit, infinitely numerous and infinitely small. The path then becomes a curve, and the series of blows becomes a steady force directed towards _S_. About whatever point therefore the rate of description of a
PREV.   NEXT  
|<   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139  
140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164   >>   >|  



Top keywords:

interval

 

directed

 

represent

 
steady
 

successive

 

description

 

Illustration

 

parallelogram

 
infinitely
 

numerous


motion

 
triangles
 

vectores

 
remain
 

provided

 

receives

 

polygon

 
forces
 

continuous

 

series


modify

 
instance
 

instructive

 

equable

 

positions

 

instants

 
direction
 

sudden

 
receive
 

divisions


equally

 

straight

 

subdivided

 

height

 
Euclid
 
obeyed
 
enclosed
 

sufficient

 

vector

 

sweeps


radius

 

diagonal

 
parallels
 

parallel

 

travelling

 

arrive

 
proves
 

attracting

 

compromise

 

result