FREE BOOKS

Author's List




PREV.   NEXT  
|<   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164   165   166   167   168   169  
170   171   172   173   174   175   176   177   178   179   180   181   182   183   184   185   186   187   188   189   190   191   192   193   194   >>   >|  
he year 1531, when one was seen by Appian; again, he reckoned 1456, 1380, 1305. All these appearances were the same comet, in all probability, returning every seventy-five or seventy-six years. The period was easily allowed to be not exact, because of perturbing planets. He then predicted its return for 1758, or perhaps 1759, a date he could not himself hope to see. He lived to a great age, but he died sixteen years before this date. As the time drew nigh, three-quarters of a century afterwards, astronomers were greatly interested in this first cometary prediction, and kept an eager look-out for "Halley's comet." Clairaut, a most eminent mathematician and student of Newton, proceeded to calculate out more exactly the perturbing influence of Jupiter, near which it had passed. After immense labour (for the difficulty of the calculation was extreme, and the mass of mere figures something portentous), he predicted its return on the 13th of April, 1759, but he considered that he might have made a possible error of a month. It returned on the 13th of March, 1759, and established beyond all doubt the rule of the Newtonian theory over comets. [Illustration: FIG. 71.--Well-known model exhibiting the oblate spheroidal form as a consequence of spinning about a central axis. The brass strip _a_ looks like a transparent globe when whirled, and bulges out equatorially.] No. 10. Applying the idea of centrifugal force to the earth considered as a rotating body, he perceived that it could not be a true sphere, and calculated its oblateness, obtaining 28 miles greater equatorial than polar diameter. Here we return to one of the more simple deductions. A spinning body of any kind tends to swell at its circumference (or equator), and shrink along its axis (or poles). If the body is of yielding material, its shape must alter under the influence of centrifugal force; and if a globe of yielding substance subject to known forces rotates at a definite pace, its shape can be calculated. Thus a plastic sphere the size of the earth, held together by its own gravity, and rotating once a day, can be shown to have its equatorial diameter twenty-eight miles greater than its polar diameter: the two diameters being 8,000 and 8,028 respectively. Now we have no guarantee that the earth is of yielding material: for all Newton could tell it might be extremely rigid. As a matter of fact it is now very nearly rigid. But he argued thus. The water on i
PREV.   NEXT  
|<   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164   165   166   167   168   169  
170   171   172   173   174   175   176   177   178   179   180   181   182   183   184   185   186   187   188   189   190   191   192   193   194   >>   >|  



Top keywords:

return

 

diameter

 

yielding

 
considered
 

sphere

 

material

 

influence

 

Newton

 
equatorial
 

rotating


calculated

 
greater
 

predicted

 
seventy
 

spinning

 

perturbing

 

centrifugal

 
central
 

simple

 

consequence


deductions

 
equatorially
 

perceived

 

Applying

 

bulges

 

transparent

 
obtaining
 

whirled

 
oblateness
 

substance


diameters

 

twenty

 

guarantee

 

argued

 
extremely
 
matter
 
gravity
 

shrink

 

circumference

 

equator


plastic

 

subject

 
forces
 

rotates

 

definite

 

sixteen

 
interested
 

cometary

 

prediction

 

greatly