FREE BOOKS

Author's List




PREV.   NEXT  
|<   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164  
165   166   167   168   169   170   171   172   173   174   175   176   177   178   179   180   181   182   183   184   185   186   187   188   189   >>   >|  
million or even billion tons; but that is quite small in astronomy. But now it may be asked, surely the moon perturbs the earth, swinging it round their common centre of gravity, and really describing its own orbit about this point instead of about the earth's centre? Yes, that is so; and a more precise consideration of Kepler's third law enables us to make a fair approximation to the position of this common centre of gravity, and thus practically to "weigh the moon," i.e. to compare its mass with that of the earth; for their masses will be inversely as their respective distances from the common centre of gravity or balancing point--on the simple steel-yard principle. Hitherto we have not troubled ourselves about the precise point about which the revolution occurs, but Kepler's third law is not precisely accurate unless it is attended to. The bigger the revolving body the greater is the discrepancy: and we see in the table preceding Lecture III., on page 57, that Jupiter exhibits an error which, though very slight, is greater than that of any of the other planets, when the sun is considered the fixed centre. Let the common centre of gravity of earth and moon be displaced a distance _x_ from the centre of the earth, then the moon's distance from the real centre of revolution is not _r_, but _r-x_; and the equation of centrifugal force to gravitative-attraction is strictly 4[pi]^2 _VE_ --------- (_r-x_) = ------, T^2 r^2 instead of what is in the text above; and this gives a slightly modified "third law." From this equation, if we have any distinct method of determining _VE_ (and the next section gives such a method), we can calculate _x_ and thus roughly weigh the moon, since _r-x_ E ----- = -----, _r_ E+M but to get anything like a reasonable result the data must be very precise. No. 6. The force constraining the moon in her orbit is the same gravity as gives terrestrial bodies their weight and regulates the motion of projectiles. Here we come to the Newtonian verification already several times mentioned; but because of its importance I will repeat it in other words. The hypothesis to be verified is that the force acting on the moon is the same kind of force as acts on bodies we can handle and weigh, and which gives them their weight. Now the weight of a mass _m_ is commonly written _mg_, whe
PREV.   NEXT  
|<   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164  
165   166   167   168   169   170   171   172   173   174   175   176   177   178   179   180   181   182   183   184   185   186   187   188   189   >>   >|  



Top keywords:

centre

 

gravity

 

common

 
precise
 

weight

 

revolution

 

greater

 

method

 
bodies
 

Kepler


equation

 
distance
 

determining

 
centrifugal
 

section

 

distinct

 

roughly

 
calculate
 

modified

 

strictly


written

 
attraction
 

slightly

 

gravitative

 

commonly

 

handle

 
hypothesis
 

Newtonian

 
verification
 

regulates


motion

 

projectiles

 

repeat

 

mentioned

 
importance
 
verified
 
reasonable
 

result

 

constraining

 

terrestrial


acting

 

approximation

 
enables
 

consideration

 

position

 

practically

 
masses
 

inversely

 

respective

 

compare