FREE BOOKS

Author's List




PREV.   NEXT  
|<   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135  
136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   >>   >|  
n in the elastic. It is impossible to have one force alone, there must be a pair. You can't push hard against a body that offers no resistance. Whatever force you exert upon a body, with that same force the body must react upon you. Action and reaction are always equal and opposite. Sometimes an absurd difficulty is felt with respect to this, even by engineers. They say, "If the cart pulls against the horse with precisely the same force as the horse pulls the cart, why should the cart move?" Why on earth not? The cart moves because the horse pulls it, and because nothing else is pulling it back. "Yes," they say, "the cart is pulling back." But what is it pulling back? Not itself, surely? "No, the horse." Yes, certainly the cart is pulling at the horse; if the cart offered no resistance what would be the good of the horse? That is what he is for, to overcome the pull-back of the cart; but nothing is pulling the cart back (except, of course, a little friction), and the horse is pulling it forward, hence it goes forward. There is no puzzle at all when once you realise that there are two bodies and two forces acting, and that one force acts on each body.[16] If, indeed, two balanced forces acted on one body that would be in equilibrium, but the two equal forces contemplated in the third law act on two different bodies, and neither is in equilibrium. So much for the third law, which is extremely simple, though it has extraordinarily far-reaching consequences, and when combined with a denial of "action at a distance," is precisely the principle of the Conservation of Energy. Attempts at perpetual motion may all be regarded as attempts to get round this "third law." [Illustration: FIG. 57.] On the subject of the _second_ law a great deal more has to be said before it can be in any proper sense even partially appreciated, but a complete discussion of it would involve a treatise on mechanics. It is _the_ law of mechanics. One aspect of it we must attend to now in order to deal with the motion of the planets, and that is the fact that the change of motion of a body depends solely and simply on the force acting, and not at all upon what the body happens to be doing at the time it acts. It may be stationary, or it may be moving in any direction; that makes no difference. Thus, referring back to the summary preceding Lecture IV, it is there stated that a dropped body
PREV.   NEXT  
|<   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135  
136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   >>   >|  



Top keywords:

pulling

 
forces
 

motion

 

precisely

 

mechanics

 

forward

 

bodies

 

resistance

 

acting

 

equilibrium


consequences

 

extraordinarily

 

combined

 

subject

 

reaching

 

Illustration

 

Conservation

 

principle

 

regarded

 

Energy


Attempts

 

attempts

 

action

 

perpetual

 

distance

 

denial

 

treatise

 

stationary

 

moving

 

direction


solely

 

simply

 
difference
 
stated
 

dropped

 

Lecture

 

preceding

 

referring

 

summary

 

depends


change

 

partially

 

appreciated

 

complete

 

discussion

 

proper

 

involve

 

simple

 

planets

 
attend