the furnaces forces
out onto a man's body and face. In the majority of furnaces this
is by far the most discomforting, and care must be taken to fend
it and turn it behind a suitable shield. The second class is the
radiant heat, discharged as light from the glowing interior of
the furnace. This is the lesser of the two evils so far as general
forging furnaces are concerned, but it becomes the predominating
feature in furnaces of large door area such as in the usual
case-hardening furnaces. Here the amount of heat discharged is
often almost unbearable even for a moment. This heat can be taken
care of by interposing suitable, opaque shields that will temporarily
absorb it without being destroyed by it, or becoming incandescent.
Should such shields be so constructed as to close off all of the
heat, it might be impossible to work around the furnace for the
removal of its contents, but they can be made movable, and in such
a manner as to shield the major portion of the worker's body.
First taking up the question of flame shields, the illustration,
Fig. 102, is a typical installation that shows the main features
for application to a forging machine or drop-hammer, oil-burning
furnace, or for an arched-over, coal furnace where the flame blows
out the front. This shield consists of a frame covered with sheet
metal and held by brackets about 6 in. in front of the furnace.
It will be noted that slotted holes make this frame adjustable
for height, and it should be lowered as far as possible when in
use, so that the work may just pass under it and into the furnace
openings.
Immediately below the furnace openings, and close to the furnace
frame will be noted a blast pipe carrying air from the forge-shop
fan. This has a row of small holes drilled in its upper side for
the entire length, and these direct a curtain of cold air vertically
across the furnace openings, forcing all of the flame, or a greater
portion of it, to rise behind the shield. Since the shield extends
above the furnace top there is no escape for this flame until it has
passed high enough to be of no further discomfort to the workman.
In this case fan-blast air is used for cooling, and this is cheaper
and more satisfactory because a great volume may be used. However,
where high-pressure air is used for atomizing the oil at the burner,
and nothing else is available, this may be employed--though naturally
a comparatively small pipe will be needed, in which minut
|