FREE BOOKS

Author's List




PREV.   NEXT  
|<   174   175   176   177   178   179   180   181   182   183   184   185   186   187   188   189   190   191   192   193   194   195   196   197   198  
199   200   201   202   203   204   205   206   207   208   209   210   211   212   213   214   215   216   217   218   219   220   221   222   223   >>   >|  
eavy weight and striking this weight gently at regular, properly timed intervals with a small cork hammer. Soon the pendulum, or weight, will be set swinging. [Illustration: FIG. 175.--The hollow wooden box reenforces the sound.] 258. Borrowed Sound. Picture frames and ornaments sometimes buzz and give forth faint murmurs when a piano or organ is played. The waves sent out by a sounding body fall upon all surrounding objects and by their repeated action tend to throw these bodies into vibration. If the period of any one of the objects corresponds with the period of the sounding body, the gentle but frequent impulses affect the object, which responds by emitting a sound. If, however, the periods do not correspond, the action of the sound waves is not sufficiently powerful to throw the object into vibration, and no sound is heard. Bodies which respond in this way are said to be sympathetic and the response produced is called _resonance_. Seashells when held to the ear seem to contain the roar of the sea; this is because the air within the shell is set into sympathetic vibrations by some external tone. If the seashell were held to the ear in an absolutely quiet room, no sound would be heard, because there would be no external forces to set into vibration the air within the shell. Tuning forks do not produce strong tones unless mounted on hollow wooden boxes (Fig. 175), whose size and shape are so adjusted that resonance occurs and strengthens the sound. When a human being talks or sings, the air within the mouth cavity is thrown into sympathetic vibration and strengthens the otherwise feeble tone of the speaker. 259. Echo. If one shouts in a forest, the sound is sometimes heard a second time a second or two later. This is because sound is reflected when it strikes a large obstructing surface. If the sound waves resulting from the shout meet a cliff or a mountain, they are reflected back, and on reaching the ear produce a later sensation of sound. By observation it has been found that the ear cannot distinguish sounds which are less than one tenth of a second apart; that is, if two sounds follow each other at an interval less than one tenth of a second, the ear recognizes not two sounds, but one. This explains why a speaker can be heard better indoors than in the open air. In the average building, the walls are so close that the reflected waves have but a short distance to travel, and hence reach the ear at practi
PREV.   NEXT  
|<   174   175   176   177   178   179   180   181   182   183   184   185   186   187   188   189   190   191   192   193   194   195   196   197   198  
199   200   201   202   203   204   205   206   207   208   209   210   211   212   213   214   215   216   217   218   219   220   221   222   223   >>   >|  



Top keywords:

vibration

 

sounds

 
weight
 

reflected

 

sympathetic

 

action

 

objects

 

object

 

resonance

 

external


period

 
hollow
 
speaker
 

wooden

 
sounding
 
produce
 

strengthens

 

surface

 

obstructing

 

forest


shouts

 

strikes

 

intervals

 

occurs

 

adjusted

 

resulting

 

feeble

 

thrown

 

cavity

 
indoors

interval

 

recognizes

 
explains
 

average

 

building

 
travel
 

practi

 
distance
 

reaching

 
sensation

mountain

 

observation

 

properly

 
follow
 

distinguish

 

bodies

 
surrounding
 

repeated

 

corresponds

 
gentle