FREE BOOKS

Author's List




PREV.   NEXT  
|<   213   214   215   216   217   218   219   220   221   222   223   224   225   226   227   228   229   230   231   232   233   234   235   236   237  
238   239   240   >>  
on of the respective currents produced, the result will be true only on condition that the resistances in the various circuits are equal. If a very large external resistance of fine wire is placed in circuit with a gravity cell, the _total_ resistance of the circuit (made up of the relatively small resistance in the cell and the larger resistance in the rest of the circuit) will differ but little from that of another circuit in which the gravity cell is replaced by a voltaic cell, or any other type of cell. With a high resistance in the outside circuit, the deflections of the ammeter will be small, but such as they are, they will fairly accurately represent the electromotive forces which produce them. Voltmeters (Fig. 236), or instruments for measuring voltage, are like ammeters except that a wire of very high resistance is in circuit with the movable coil. In external appearance they are not distinguishable from ammeters. [Illustration: FIG. 236.--A voltmeter.] The unit of electromotive force is called the _volt_. The voltage of a dry cell is approximately 1.5 volts, and the voltage of a voltaic cell and of a gravity cell is approximately 1 volt. 316. Current, Voltage, Resistance. We learned in Section 287 that the strength of a current increases when the electromotive force increases, and diminishes when the electromotive force diminishes. Later, in Section 288, we learned that the strength of the current decreases as the resistance in circuit increases. The strength of a steady current depends upon these two factors only, the electromotive force which causes it and the resistance which it has to overcome. 317. Resistance. Since resistance plays so important a role in electricity, it becomes necessary to have a unit of resistance. The practical unit of resistance is called an ohm, and some idea of the value of an ohm can be obtained if we remember that a 300-foot length of common iron telegraph wire has a resistance of 1 ohm. An approximate ohm for rough work in the laboratory may be made by winding 9 feet 5 inches of number 30 copper wire on a spool or arranging it in any other convenient form. In Section 299 we learned that substances differ very greatly in the resistance which they offer to electricity, and so it will not surprise us to learn that while it takes 300 feet of iron telegraph wire to give 1 ohm of resistance, it takes but 39 feet of number 24 copper wire, and but 2.2 feet of number 24
PREV.   NEXT  
|<   213   214   215   216   217   218   219   220   221   222   223   224   225   226   227   228   229   230   231   232   233   234   235   236   237  
238   239   240   >>  



Top keywords:

resistance

 

circuit

 
electromotive
 

Section

 

number

 

increases

 

current

 

learned

 

strength

 

voltage


gravity

 
telegraph
 
copper
 

external

 
called
 
approximately
 

diminishes

 

electricity

 

Resistance

 

ammeters


voltaic

 

differ

 

currents

 

overcome

 

result

 

produced

 

important

 

practical

 

obtained

 
winding

substances

 

laboratory

 
respective
 

inches

 

convenient

 
surprise
 

remember

 
arranging
 

length

 
common

approximate

 

greatly

 

condition

 
forces
 

produce

 

represent

 
accurately
 

fairly

 

Voltmeters

 
measuring