FREE BOOKS

Author's List




PREV.   NEXT  
|<   210   211   212   213   214   215   216   217   218   219   220   221   222   223   224   225   226   227   228   229   230   231   232   233   234  
235   236   237   238   239   240   >>  
he amount of current which can safely flow through a wire depends upon the thickness of the wire. A strong current sent through a fine wire has its electrical energy transformed largely into heat; and if the current is very strong, the heat developed may be sufficient to burn off the insulation and melt the wire itself. This is true not only of motors, but of all electric machinery in which there are current-bearing wires. The current should not be greater than the wires can carry, otherwise too much heat will be developed and damage will be done to instruments and surroundings. The current sent through our electric stoves and irons should be strong enough to heat the coils, but not strong enough to melt them. If the current sent through our electric light wires is too great for the capacity of the wires, the heat developed will injure the wires and may cause disastrous results. The overloading of wires is responsible for many disastrous fires. The danger of overloading may be eliminated by inserting in the circuit a fuse or other safety device. A fuse is made by combining a number of metals in such a way that the resulting substance has a low melting point and a high electrical resistance. A fuse is inserted in the circuit, and the instant the current increases beyond its normal amount the fuse melts, breaks the circuit, and thus protects the remaining part of the circuit from the danger of an overload. In this way, a circuit designed to carry a certain current is protected from the danger of an accidental overload. The noise made by the burning out of a fuse in a trolley car frequently alarms passengers, but it is really a sign that the system is in good working order and that there is no danger of accident from too strong a current. 313. How Current is Measured. The preceding Section has shown clearly the danger of too strong a current, and the necessity for limiting the current to that which the wire can safely carry. There are times when it is desirable to know accurately the strength of a current, not only in order to guard against an overload, but also in order to determine in advance the mechanical and chemical effects which will be produced by the current. For example, the strength of the current determines the thickness of the coating of silver which forms in a given time on a spoon placed in an electrolytic bath; if the current is weak, a thin plating is made on the spoon; if the current is strong, a th
PREV.   NEXT  
|<   210   211   212   213   214   215   216   217   218   219   220   221   222   223   224   225   226   227   228   229   230   231   232   233   234  
235   236   237   238   239   240   >>  



Top keywords:

current

 
strong
 

circuit

 

danger

 

developed

 

overload

 

electric

 

disastrous

 

strength

 

electrical


thickness

 

safely

 

amount

 

overloading

 

accident

 

passengers

 

Current

 

frequently

 

trolley

 

accidental


burning

 

protected

 

system

 

working

 

alarms

 

designed

 

determine

 

coating

 
silver
 

determines


effects

 

produced

 
plating
 

electrolytic

 

chemical

 

mechanical

 

limiting

 

necessity

 

preceding

 

Section


desirable

 

advance

 
accurately
 

Measured

 

greater

 
bearing
 

machinery

 

damage

 

stoves

 
instruments