FREE BOOKS

Author's List




PREV.   NEXT  
|<   207   208   209   210   211   212   213   214   215   216   217   218   219   220   221   222   223   224   225   226   227   228   229   230   231  
232   233   234   235   236   237   238   239   240   >>  
existence entirely to the magnetic action of current electricity. [Illustration: FIG. 228.--The coil turns in such a way that its north pole is opposite the south pole of the magnet.] 309. The Principle of the Motor. If a close coil of wire is suspended between the poles of a strong horseshoe magnet, it will not assume any characteristic position but will remain wherever placed. If, however, a current is sent through the wire, the coil faces about and assumes a definite position. This is because a coil, carrying a current, is equivalent to a magnet with a north and south face; and, in accordance with the magnetic laws, tends to move until its north face is opposite the south pole of the horseshoe magnet, and its south face opposite the north pole of the magnet. If, when the coil is at rest in this position, the current is reversed, so that the north pole of the coil becomes a south pole and the former south pole becomes a north pole, the result is that like poles of coil and magnet face each other. But since like poles repel each other, the coil will move, and will rotate until its new north pole is opposite to the south pole of the magnet and its new south pole is opposite the north pole. By sending a strong current through the coil, the helix is made to rotate through a half turn; by reversing the current when the coil is at the half turn, the helix is made to continue its rotation and to swing through a whole turn. If the current could be repeatedly reversed just as the helix completed its half turn, the motion could be prolonged; periodic current reversal would produce continuous rotation. This is the principle of the motor. [Illustration: FIG. 229.--Principle of the motor.] It is easy to see that long-continued rotation would be impossible in the arrangement of Figure 228, since the twisting of the suspending wire would interfere with free motion. If the motor is to be used for continuous motion, some device must be employed by means of which the helix is capable of continued rotation around its support. In practice, the rotating coil of a motor is arranged as shown in Figure 229. Wires from the coil terminate on metal disks and are securely soldered there. The coil and disks are supported by the strong and well-insulated rod _R_, which rests upon braces, but which nevertheless rotates freely with disks and coil. The current flows to the coil through the thin metal strips called brushes, which rest light
PREV.   NEXT  
|<   207   208   209   210   211   212   213   214   215   216   217   218   219   220   221   222   223   224   225   226   227   228   229   230   231  
232   233   234   235   236   237   238   239   240   >>  



Top keywords:

current

 
magnet
 

opposite

 

rotation

 

strong

 

position

 

motion

 

rotate

 

reversed

 

horseshoe


Figure

 

Principle

 

continuous

 

Illustration

 

magnetic

 

continued

 

employed

 

interfere

 

suspending

 

arrangement


device

 

twisting

 

impossible

 

terminate

 

braces

 

insulated

 

rotates

 

freely

 
brushes
 

called


strips

 

supported

 
practice
 

rotating

 

arranged

 

support

 

capable

 

soldered

 

securely

 

characteristic


remain

 

assume

 
assumes
 

electricity

 

action

 
existence
 

suspended

 

definite

 

repeatedly

 
continue