FREE BOOKS

Author's List




PREV.   NEXT  
|<   206   207   208   209   210   211   212   213   214   215   216   217   218   219   220   221   222   223   224   225   226   227   228   229   230  
231   232   233   234   235   236   237   238   239   240   >>  
as follows:-- _a_, _b_. If a helix marked at one end with a red string is arranged so that it is free to rotate and a strong current is sent through it, the helix will immediately turn and face about until it points north and south. If it is disturbed from this position, it will slowly swing back until it occupies its characteristic north and south position. The end to which the string is attached will persistently point either north or south. If the current is sent through the coil in the opposite direction, the two poles exchange positions and the helix turns until the new north pole points north. [Illustration: FIG. 226.--A helix through which current flows always points north and south, if it is free to rotate.] _c_. If a coil conducting a current is held near a suspended magnet, one end of the helix will be found to attract the north pole of the magnet, while the opposite end will be found to repel the north pole of the magnet. In fact, the helix will be found to behave in every way as a magnet, with a north pole at one end and a south pole at the other. If the current is sent through the helix in the opposite direction, the north and south poles exchange places. [Illustration: FIG. 227.--A wire through which current flows is surrounded by a field of magnetic force.] If the number of turns in the helix is reduced until but a single loop remains, the result is the same; the single loop acts like a flat magnet, one side of the loop always facing northward and one southward, and one face attracting the north pole of the suspended magnet and one repelling it. _d_. If a wire is passed through a card and a strong current is sent through the wire, iron filings will, when sprinkled upon the card, arrange themselves in definite directions (Fig. 227). A wire carrying a current is surrounded by a magnetic field of force. A magnetic needle held under a current-bearing wire turns on its pivot and finally comes to rest at an angle with the current. The fact that the needle is deflected by the wire shows that the magnetic power of the wire extends into the surrounding medium. The magnetic properties of current electricity were discovered by Oersted of Denmark less than a hundred years ago; but since that time practically all important electrical machinery has been based upon one or more of the magnetic properties of electricity. The motors which drive our electric fans, our mills, and our trolley cars owe their
PREV.   NEXT  
|<   206   207   208   209   210   211   212   213   214   215   216   217   218   219   220   221   222   223   224   225   226   227   228   229   230  
231   232   233   234   235   236   237   238   239   240   >>  



Top keywords:
current
 
magnet
 
magnetic
 

points

 
opposite
 

Illustration

 
exchange
 
needle
 

surrounded

 

direction


single

 
electricity
 

properties

 

suspended

 

position

 
string
 

rotate

 

strong

 

trolley

 

electric


deflected

 

definite

 

directions

 

arrange

 

carrying

 

finally

 

bearing

 

extends

 
important
 
Denmark

electrical

 
Oersted
 

practically

 

sprinkled

 

hundred

 

discovered

 

machinery

 

surrounding

 

medium

 

motors


persistently

 
attached
 

characteristic

 

occupies

 

positions

 
slowly
 
arranged
 

marked

 

immediately

 
disturbed