FREE BOOKS

Author's List




PREV.   NEXT  
|<   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132  
133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   >>   >|  
may either happen or fail, that fraction will be a proper designation of the probability of happening. Thus, if an event has 3 chances to happen, and 2 to fail, then the fraction 3/5 will fairly represent the probability of its happening, and may be taken to be the measure of it. The same may be said of the probability of failing, which will likewise be measured by a fraction whose numerator is the number of chances whereby it may fail, and the denominator the whole number of chances both for its happening and failing; thus the probability of the failing of that event which has 2 chances to fail and 3 to happen will be measured by the fraction 2/5. The fractions which represent the probabilities of happening and failing, being added together, their sum will always be equal to unity, since the sum of their numerators will be equal to their common denominator. Now, it being a certainty that an event will either happen or fail, it follows that certainty, which may be conceived under the notion of an infinitely great degree of probability, is fitly represented by unity. These things will be easily apprehended if it be considered that the word probability includes a double idea; first, of the number of chances whereby an event may happen; secondly, of the number of chances whereby it may either happen or fail. If I say that I have three chances to win any sum of money, it is impossible from the bare assertion to judge whether I am likely to obtain it; but if I add that the number of chances either to obtain it or miss it, is five in all, from this will ensue a comparison between the chances that are for and against me, whereby a true judgment will be formed of my probability of success; whence it necessarily follows that it is the comparative magnitude of the number of chances to happen, in respect of the whole number of chances either to happen or to fail, which is the true measure of probability. To find the probability of throwing an ace in two throws with a single die. The probability of throwing an ace the first time is 1/6; whereof 1/ is the first part of the probability required. If the ace be missed the first time, still it may be thrown on the second; but the probability of missing it the first time is 5/6, and the probability of throwing it the second time is 1/6; therefore the probability of missing it the first time and throwing it the second, is 5/6 X 1/6 = 5/36 and this is the second part of the proba
PREV.   NEXT  
|<   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132  
133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   >>   >|  



Top keywords:
probability
 

chances

 

happen

 

number

 

failing

 

fraction

 

happening

 

throwing

 

obtain

 
certainty

missing

 
represent
 

measure

 
measured
 

denominator

 

comparison

 
judgment
 

success

 

throws

 
missed

required
 

single

 
thrown
 

necessarily

 

whereof

 
comparative
 

magnitude

 

respect

 

formed

 

probabilities


fractions
 
numerators
 

conceived

 

common

 

fairly

 

designation

 

proper

 

numerator

 
likewise
 

notion


infinitely

 
assertion
 

impossible

 

double

 

represented

 
degree
 

things

 

easily

 

includes

 

considered