FREE BOOKS

Author's List




PREV.   NEXT  
|<   270   271   272   273   274   275   276   277   278   279   280   281   282   283   284   285   286   287   288   289   290   291   292   293   294  
295   296   297   298   299   300   301   302   303   304   305   306   307   308   309   310   311   312   313   314   315   316   317   318   319   >>   >|  
carry spent gases above the roofs, to install a stack the height of which is out of all proportion to the requirements of the boilers. In such cases it is permissible to decrease the diameter of a stack, but care must be taken that this decrease is not sufficient to cause a frictional loss in the stack as great as the added draft intensity due to the increase in height, which local conditions make necessary. In such cases also the fact that the stack diameter is permissibly decreased is no reason why flue sizes connecting to the stack should be decreased. These should still be figured in proportion to the area of the stack that would be furnished under ordinary conditions or with an allowance of 35 square feet per 1000 horse power, even though the cross sectional area appears out of proportion to the stack area. Loss in Boiler--In calculating the available draft of a chimney 120 pounds per hour has been used as the weight of the gases per boiler horse power. This covers an overload of the boiler to an extent of 50 per cent and provides for the use of poor coal. The loss in draft through a boiler proper will depend upon its type and baffling and will increase with the per cent of rating at which it is run. No figures can be given which will cover all conditions, but for approximate use in figuring the available draft necessary it may be assumed that the loss through a boiler will be 0.25 inch where the boiler is run at rating, 0.40 inch where it is run at 150 per cent of its rated capacity, and 0.70 inch where it is run at 200 per cent of its rated capacity. Loss in Furnace--The draft loss in the furnace or through the fuel bed varies between wide limits. The air necessary for combustion must pass through the interstices of the coal on the grate. Where these are large, as is the case with broken coal, but little pressure is required to force the air through the bed; but if they are small, as with bituminous slack or small sizes of anthracite, a much greater pressure is needed. If the draft is insufficient the coal will accumulate on the grates and a dead smoky fire will result with the accompanying poor combustion; if the draft is too great, the coal may be rapidly consumed on certain portions of the grate, leaving the fire thin in spots and a portion of the grates uncovered with the resulting losses due to an excessive amount of air. [Graph: Force of Draft between Furnace and Ash Pit--Inches of Water against Pou
PREV.   NEXT  
|<   270   271   272   273   274   275   276   277   278   279   280   281   282   283   284   285   286   287   288   289   290   291   292   293   294  
295   296   297   298   299   300   301   302   303   304   305   306   307   308   309   310   311   312   313   314   315   316   317   318   319   >>   >|  



Top keywords:

boiler

 

conditions

 
proportion
 

combustion

 
decrease
 

diameter

 

capacity

 
rating
 

Furnace

 

height


pressure

 

grates

 

increase

 
decreased
 

leaving

 

varies

 
portions
 

consumed

 

rapidly

 

amount


excessive
 

furnace

 
resulting
 
uncovered
 

losses

 
Inches
 

bituminous

 

accumulate

 

anthracite

 

greater


insufficient

 

required

 

portion

 
result
 

interstices

 

accompanying

 

needed

 

broken

 

limits

 

extent


reason

 

permissibly

 
connecting
 

ordinary

 

allowance

 

furnished

 

figured

 

intensity

 

install

 
requirements