FREE BOOKS

Author's List




PREV.   NEXT  
|<   273   274   275   276   277   278   279   280   281   282   283   284   285   286   287   288   289   290   291   292   293   294   295   296   297  
298   299   300   301   302   303   304   305   306   307   308   309   310   311   312   313   314   315   316   317   318   319   320   321   322   >>   >|  
and further that the increased velocity of a given weight of air passing through the furnace at a higher altitude would have no effect on the combustion, the theory has been advanced[53] that a different law applies. Under the above assumptions, whenever a stack is working at its maximum capacity at any altitude, the entire draft is utilized in overcoming the various resistances, each of which is proportional to the square of the velocity of the gases. Since boiler areas are fixed, all velocities may be related to a common velocity, say, that within the stack, and all resistances may, therefore, be expressed as proportional to the square of the chimney velocity. The total resistance to flow, in terms of velocity head, may be expressed in terms of weight of a column of external air, the numerical value of such head being independent of the barometric pressure. Likewise the draft of a stack, expressed in height of column of external air, will be numerically independent of the barometric pressure. It is evident, therefore, that if a given boiler plant, with its stack operated with a fixed fuel, be transplanted from sea level to an altitude, assuming the temperatures remain constant, the total draft head measured in height of column of external air will be numerically constant. The velocity of chimney gases will, therefore, remain the same at altitude as at sea level and the weight of gases flowing per second with a fixed velocity will be proportional to the atmospheric density or inversely proportional to the normal barometric pressure. To develop a given horse power requires a constant weight of chimney gas and air for combustion. Hence, as the altitude is increased, the density is decreased and, for the assumptions given above, the velocity through the furnace, the boiler passes, breeching and flues must be correspondingly greater at altitude than at sea level. The mean velocity, therefore, for a given boiler horse power and constant weight of gases will be inversely proportional to the barometric pressure and the velocity head measured in column of external air will be inversely proportional to the square of the barometric pressure. For stacks operating at altitude it is necessary not only to increase the height but also the diameter, as there is an added resistance within the stack due to the added friction from the additional height. This frictional loss can be compensated by a suitable increase in the diameter
PREV.   NEXT  
|<   273   274   275   276   277   278   279   280   281   282   283   284   285   286   287   288   289   290   291   292   293   294   295   296   297  
298   299   300   301   302   303   304   305   306   307   308   309   310   311   312   313   314   315   316   317   318   319   320   321   322   >>   >|  



Top keywords:

velocity

 

altitude

 
proportional
 

pressure

 
weight
 

barometric

 

column

 
constant
 

height

 

external


boiler

 

expressed

 

square

 
inversely
 

chimney

 

increased

 
independent
 

measured

 

resistance

 

furnace


numerically
 

diameter

 
combustion
 
assumptions
 

density

 
remain
 

resistances

 

increase

 

flowing

 

atmospheric


normal

 

develop

 

requires

 
friction
 

additional

 

frictional

 

suitable

 

compensated

 

correspondingly

 

greater


breeching

 

passes

 
operating
 

stacks

 

decreased

 

overcoming

 

theory

 

effect

 

utilized

 
entire