FREE BOOKS

Author's List




PREV.   NEXT  
|<   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33  
34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   >>   >|  
ble is essential. It has been found that the electrostatic capacity of one mile of submarine cable is equal to the capacity of 20 miles of overhead line, and as the effect of capacity is to retard the current and reduce the speed of working, it is evident that where there is any great length of cable in the circuit the distance of possible transmission is enormously reduced. If we take for an example the London-Paris telephone line with a length of 311 miles and a capacity of 10.62 microfarads, we find that about half this capacity, or 5.9 microfarads,[1] is contributed by the 23 miles of cable connecting England with France. In practice the reduction of speed due to capacity has, to a great extent, been overcome by means of apparatus known as a line-balancer, which hastens the slow discharge of the line and {4} allows each current sent out from the transmitter--the current in several systems being intermittent--to be recorded separately on the receiver. Photographs suitable for press work can now be sent over a line which includes only a short length of cable for a distance of quite 400 miles in about ten minutes, the time, of course, depending upon the size of the photograph. In extending the working to other countries where there is need for a great length of cable, as between England and Ireland, or America, the retardation due to capacity is very great. On a cable joining this country with America the current is retarded four-tenths of a second. In submarine telegraphy use is made of only one cable with an earth return, but special means have had to be adopted to overcome interference from earth currents, as the enormous cost prohibits the laying of a second cable to provide a complete metallic circuit. The current available at the cable ends for receiving is very small, being only 1/200000th part of an ampere, and this necessitates the use of apparatus of a very sensitive character. One system of photo-telegraphy in use at the present time, employs what is known as an electrolytic receiver (see Chapter III.) which can record signals over a length of line in which the capacity effects are very slight, with the marvellous speed of 12,000 a minute, but this speed rapidly decreases with an increase of distance between the {5} [Illustration] two stations. The effect of capacity upon an intermittent current is clearly shown in Fig. 1. If we were to send twenty brief currents in rapid succession over a line of moderate
PREV.   NEXT  
|<   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33  
34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   >>   >|  



Top keywords:

capacity

 

current

 
length
 

distance

 

England

 
America
 

telegraphy

 

overcome

 

apparatus

 
intermittent

microfarads

 
receiver
 

currents

 

submarine

 

effect

 
circuit
 

working

 

enormous

 

laying

 

complete


metallic
 

stations

 
provide
 

prohibits

 

interference

 

tenths

 

retarded

 
succession
 

moderate

 

country


adopted
 
special
 

twenty

 
return
 

present

 

employs

 

slight

 

marvellous

 
system
 
record

Chapter

 

signals

 

effects

 

electrolytic

 
joining
 

character

 

receiving

 

200000th

 
increase
 

Illustration