FREE BOOKS

Author's List




PREV.   NEXT  
|<   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53  
54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   >>   >|  
nsitive instrument, employed by M. Belin, and known as Blondel's oscillograph, consists of two fine wires stretched between the poles of a powerful electro-magnet, a small and very light mirror being attached to the centre of the wires. The current passes down one wire and up the other, and the wires, together with the mirror, are twisted to a degree depending upon the strength of the received current. In order to render the instrument dead-beat the moving parts are arranged to work in oil. The light reflected from the mirror is made use of in a manner similar to that shown in Fig. 22. In all photographic methods of receiving, the apparatus must be enclosed in some way to prevent any extraneous light from reaching the film, or better still placed in a room lighted only by means of a ruby light. The following method is given more as a suggestion than anything else, as I do not think it has been tried for wireless receiving, although it is stated to have given some good results over {48} ordinary land lines. It is the invention of Charbonelle, a French engineer, and is quite an original idea. His method consists of placing a sheet of carbon paper between two sheets of thin white paper, and wrapping the whole tightly round the drum of the machine. A hardened steel point is fastened to the diaphragm of a telephone receiver, and this receiver is placed so that the steel point presses against the sheets of paper. As the diaphragm and steel point vibrates under the influence of the received currents marks are made by the carbon sheet on the bottom paper. Over a line where a fair amount of current is available at the receiver, the diaphragm would have sufficient movement to mark the paper, but the movement would be very small with the current received from a detector. This difficulty could no doubt be overcome to a certain extent by making a special telephone receiver, with a large and very flexible diaphragm, and wound for a very high resistance. The movement of an ordinary telephone diaphragm for a barely audible sound is, measured at the centre, about 10^{-6} of a c.m. With a unit current the movement at the centre is about 1/700th of an inch. Greater movement of the diaphragm could be obtained by connecting a _Telephone relay_ to the detector, and using the magnified current from the relay to operate the telephone. {49} [Illustration: FIG. 25.] The telephone relay consists of a microphone C, Fig. 25, formed of the t
PREV.   NEXT  
|<   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53  
54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   >>   >|  



Top keywords:

current

 

diaphragm

 
telephone
 

movement

 
receiver
 

centre

 

mirror

 

received

 

consists

 

detector


receiving

 

ordinary

 

sheets

 

carbon

 

method

 

instrument

 

magnified

 

operate

 

fastened

 

Illustration


resistance

 

connecting

 

influence

 

Telephone

 
vibrates
 
presses
 

hardened

 

microphone

 

formed

 

audible


placing

 

wrapping

 

machine

 

tightly

 
barely
 
currents
 

overcome

 

difficulty

 

measured

 
special

making
 

extent

 
amount
 
bottom
 
obtained
 
Greater
 

sufficient

 

flexible

 

render

 
moving