FREE BOOKS

Author's List




PREV.   NEXT  
|<   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61  
62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   >>   >|  
iving instrument, and the speed of the motor is regulated until this line lies close against a line drawn across the electrolytic paper. Although this may seem an ideal method there are one or two considerations to be taken into account. Unless the decomposition marks are made the correct length and are properly spaced, however good the isochronising may be, the result will be a blurred image. Any one who has worked with a selenium cell, will know that it cannot change from its state of high resistance to that of low resistance with infinite rapidity, and the effects of this inertia, or "fatigue" as it has been called, are more pronounced when working at a high speed. In working, the effects of this inertia would be to increase the time of contact of the relay F (Fig. 30) as the current from D would flow for a slightly longer period through R to F than the period of {65} illumination allowed by K. This, of course, would mean a lengthening of the marks on the paper; results would also differ greatly with different selenium cells. There is a method of compensation by which the inertia of a cell can almost entirely be overcome, but it would add greatly to the complicacy of the receiving apparatus. In using an electro-motor with any optical method of receiving there are two methods available. The first is an arrangement similar to that used by Professor Korn in his early experiments with his selenium machines. The motor used for driving has several coils in the armature connected with slip rings, from which an alternating current may be tapped off; the motor acting partially as a generator, besides doing good work as a motor in driving the machine. This alternating current is conducted to a frequency meter, which consists of a powerful electro-magnet, over which are placed magnetised steel springs, having different natural periods of vibration. By means of a regulating resistance the motor is run until the spring which has the same period as the desired armature speed vibrates freely. The speed of the motors at both stations can thus be adjusted with a fair amount of accuracy. Another method is to make use of a governor similar to those employed in the Hughes printing telegraph system. A drawing of the governor is given in Fig. 32. It consists of a [Illustration] {67} metal frame which supports an upright steel bar S, whose ends turn on pivots. This bar is rectangular in section. The gear-wheel G is fastened near the botto
PREV.   NEXT  
|<   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61  
62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   >>   >|  



Top keywords:

method

 

inertia

 
period
 

selenium

 

resistance

 
current
 

working

 

governor

 

effects

 
greatly

consists

 
electro
 

armature

 

driving

 

similar

 
receiving
 

alternating

 

vibration

 

springs

 

natural


magnetised
 

periods

 
tapped
 

connected

 

experiments

 

machines

 

acting

 
partially
 

frequency

 

powerful


conducted
 
machine
 

generator

 
magnet
 

adjusted

 

supports

 

upright

 

Illustration

 
drawing
 
fastened

section

 

pivots

 

rectangular

 

system

 
telegraph
 

freely

 

vibrates

 

motors

 
stations
 

desired