FREE BOOKS

Author's List




PREV.   NEXT  
|<   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45  
46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   >>   >|  
e consequence. In a non-synchronous gap a separate motor is used for driving the toothed wheel, and can either be mounted on the motor shaft or driven by means of a band, there being no regard given to synchronism with the alternator. The fixed electrode is best made long enough to cover about two of the teeth, as this ensures regular sparking and a uniform sparking distance; the {29} spark length is double the length of the spark-gap. The toothed wheel should revolve at a high speed, anything from 5000 to 8000 revolutions per minute, or even more being required. The shaft of the toothed wheel is preferably mounted in ball-bearings. Owing to the large number of sparks that are required per minute in order to transmit a photograph at even an ordinary speed, it is necessary that the contact breaker be capable of working at a very high speed indeed. The best break to use is what is known as a "mercury jet" interrupter, the frequency of the interruptions being in some cases as high as 70,000 per second. No description of these breaks will be given, as the working of them is generally well understood. In some cases an alternator is used in place of the battery B, Fig. 4, and when this is done the break M can be dispensed with. In larger stations the coil H is replaced with a special transformer. The writer has designed an improved relay which will respond to currents lasting only 1/100th part of a second, and capable of dealing with rather large currents in the local circuit.[5] This relay has not yet been tried, but if it is successful the two relays R and R' can be dispensed with, and the result will be more accurate and effective transmission. {30} [Illustration: FIG. 15.] The connections for a complete experimental station, transmitting and receiving apparatus combined, are given in Fig. 15. The terminals W, W are for connecting to the photo-telegraphic receiving apparatus Q, being a double pole two-way switch for throwing either the transmitting or receiving apparatus in circuit. There is another system of transmitting devised by Professor Korn, which employs an entirely different method from the foregoing. By using the apparatus just described, the waves generated are what are known as "damped waves," and by using these damped waves, tuning, which is so essential to good commercial working, can be made to reach a fairly high degree of efficiency. {31} The question of damped _versus_ undamped waves is a so
PREV.   NEXT  
|<   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45  
46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   >>   >|  



Top keywords:

apparatus

 

damped

 
working
 

transmitting

 

receiving

 
toothed
 

length

 

double

 

required

 
minute

dispensed

 
alternator
 

capable

 

currents

 

circuit

 
sparking
 

mounted

 

Illustration

 

effective

 

transmission


dealing
 

respond

 
lasting
 

successful

 

relays

 

result

 

connections

 
accurate
 

throwing

 

generated


tuning
 
essential
 

method

 
foregoing
 

commercial

 

question

 

versus

 

undamped

 
efficiency
 
fairly

degree

 

telegraphic

 

connecting

 

terminals

 
experimental
 

station

 

combined

 

Professor

 
employs
 

devised