FREE BOOKS

Author's List




PREV.   NEXT  
|<   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66  
67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   >>   >|  
er a principle which, for him, had a generality greater than mechanics itself, and so his discovery was in advance not only of his own time but of half the century. He may justly be considered the founder of modern energetics. Freed from the obscurities which prevented its being clearly perceived, his idea stands out to-day in all its imposing simplicity. Yet it must be acknowledged that if it was somewhat denaturalised by those who endeavoured to adapt it to the theories of mechanics, and if it at first lost its sublime stamp of generality, it thus became firmly fixed and consolidated on a more stable basis. The efforts of Helmholtz, Clausius, and Lord Kelvin to introduce the principle of the conservation of energy into mechanics, were far from useless. These illustrious physicists succeeded in giving a more precise form to its numerous applications; and their attempts thus contributed, by reaction, to give a fresh impulse to mechanics, and allowed it to be linked to a more general order of facts. If energetics has not been able to be included in mechanics, it seems indeed that the attempt to include mechanics in energetics was not in vain. In the middle of the last century, the explanation of all natural phenomena seemed more and more referable to the case of central forces. Everywhere it was thought that reciprocal actions between material points could be perceived, these points being attracted or repelled by each other with an intensity depending only on their distance or their mass. If, to a system thus composed, the laws of the classical mechanics are applied, it is shown that half the sum of the product of the masses by the square of the velocities, to which is added the work which might be accomplished by the forces to which the system would be subject if it returned from its actual to its initial position, is a sum constant in quantity. This sum, which is the mechanical energy of the system, is therefore an invariable quantity in all the states to which it may be brought by the interaction of its various parts, and the word energy well expresses a capital property of this quantity. For if two systems are connected in such a way that any change produced in the one necessarily brings about a change in the other, there can be no variation in the characteristic quantity of the second except so far as the characteristic quantity of the first itself varies--on condition, of course, that the connexions are ma
PREV.   NEXT  
|<   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66  
67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   >>   >|  



Top keywords:

mechanics

 

quantity

 
energy
 

system

 

energetics

 
perceived
 

change

 

generality

 

century

 

characteristic


forces
 

principle

 
points
 

applied

 

Everywhere

 

velocities

 

referable

 
square
 

central

 

masses


product

 
composed
 

material

 

intensity

 

repelled

 
accomplished
 

depending

 
distance
 
attracted
 

thought


reciprocal
 

actions

 

classical

 

necessarily

 

brings

 

produced

 
systems
 

connected

 

condition

 

connexions


varies

 

variation

 

mechanical

 
invariable
 
constant
 

position

 

subject

 

returned

 

actual

 

initial