FREE BOOKS

Author's List




PREV.   NEXT  
|<   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104  
105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   >>   >|  
wever, in reality, to a difference in the value of certain coefficients. It is impossible to discover by this means any absolute characteristic which establishes a separation between the two classes. Modern researches prove this clearly. It is not without use, in order to well understand them, to state precisely the meaning of a few terms generally rather loosely employed. If a conjunction of forces acting on a homogeneous material mass happens to deform it without compressing or dilating it, two very distinct kinds of reactions may appear which oppose themselves to the effort exercised. During the time of deformation, and during that time only, the first make their influence felt. They depend essentially on the greater or less rapidity of the deformation, they cease with the movement, and could not, in any case, bring the body back to its pristine state of equilibrium. The existence of these reactions leads us to the idea of viscosity or internal friction. The second kind of reactions are of a different nature. They continue to act when the deformation remains stationary, and, if the external forces happen to disappear, they are capable of causing the body to return to its initial form, provided a certain limit has not been exceeded. These last constitute rigidity. At first sight a solid body appears to have a finite rigidity and an infinite viscosity; a liquid, on the contrary, presents a certain viscosity, but no rigidity. But if we examine the matter more closely, beginning either with the solids or with the liquids, we see this distinction vanish. Tresca showed long ago that internal friction is not infinite in a solid; certain bodies can, so to speak, at once flow and be moulded. M.W. Spring has given many examples of such phenomena. On the other hand, viscosity in liquids is never non-existent; for were it so for water, for example, in the celebrated experiment effected by Joule for the determination of the mechanical equivalent of the caloric, the liquid borne along by the floats would slide without friction on the surrounding liquid, and the work done by movement would be the same whether the floats did or did not plunge into the liquid mass. In certain cases observed long ago with what are called pasty bodies, this viscosity attains a value almost comparable to that observed by M. Spring in some solids. Nor does rigidity allow us to establish a barrier between the two states. Notwithstanding the ext
PREV.   NEXT  
|<   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104  
105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   >>   >|  



Top keywords:

viscosity

 
rigidity
 

liquid

 

reactions

 

friction

 

deformation

 
internal
 

Spring

 

forces

 

bodies


floats

 

movement

 

solids

 
observed
 
infinite
 

liquids

 

contrary

 

appears

 

finite

 

beginning


closely
 

moulded

 
vanish
 

distinction

 
Tresca
 
examine
 

showed

 

matter

 

presents

 
existent

called
 
plunge
 
surrounding
 
attains
 

barrier

 

establish

 

states

 

Notwithstanding

 

comparable

 
phenomena

examples

 

mechanical

 

equivalent

 
caloric
 

determination

 

celebrated

 

experiment

 
effected
 

continue

 

conjunction