FREE BOOKS

Author's List




PREV.   NEXT  
|<   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126  
127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   >>   >|  
is proportional to the quantity of matter deposited on the electrodes. This leads us at once to the consideration that, in any given solution, all the ions possess individual charges equal in absolute value. The second law may be stated in these terms: an atom-gramme of metal carries with it into electrolysis a quantity of electricity proportionate to its valency.[19] [Footnote 19: The valency or atomicity of an element may be defined as the power it possesses of entering into compounds in a certain fixed proportion. As hydrogen is generally taken as the standard, in practice the valency of an atom is the number of hydrogen atoms it will combine with or replace. Thus chlorine and the rest of the halogens, the atoms of which combine with one atom of hydrogen, are called univalent, oxygen a bivalent element, and so on.--ED.] Numerous experiments have made known the total mass of hydrogen capable of carrying one coulomb, and it will therefore be possible to estimate the charge of an ion of hydrogen if the number of atoms of hydrogen in a given mass be known. This last figure is already furnished by considerations derived from the kinetic theory, and agrees with the one which can be deduced from the study of various phenomena. The result is that an ion of hydrogen having a mass of 1.3 x 10^{-20} grammes bears a charge of 1.3 X 10^{-20} electromagnetic units; and the second law will immediately enable the charge of any other ion to be similarly estimated. The measurements of conductivity, joined to certain considerations relating to the differences of concentration which appear round the electrode in electrolysis, allow the speed of the ions to be calculated. Thus, in a liquid containing 1/10th of a hydrogen-ion per litre, the absolute speed of an ion would be 3/10ths of a millimetre per second in a field where the fall of potential would be 1 volt per centimetre. Sir Oliver Lodge, who has made direct experiments to measure this speed, has obtained a figure very approximate to this. This value is very small compared to that which we shall meet with in gases. Another consequence of the laws of Faraday, to which, as early as 1881, Helmholtz drew attention, may be considered as the starting-point of certain new doctrines we shall come across later. Helmholtz says: "If we accept the hypothesis that simple bodies are composed of atoms, we are obliged to admit that, in the same way, electricity, whether positive or n
PREV.   NEXT  
|<   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126  
127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   >>   >|  



Top keywords:

hydrogen

 

valency

 

charge

 

Helmholtz

 

element

 

number

 

considerations

 
combine
 

figure

 

absolute


quantity

 

experiments

 

electrolysis

 

electricity

 

centimetre

 

conductivity

 
estimated
 

potential

 

similarly

 

enable


measurements

 

electrode

 

calculated

 

liquid

 

relating

 

millimetre

 
differences
 

concentration

 

joined

 

accept


doctrines

 

hypothesis

 

simple

 

positive

 

bodies

 

composed

 

obliged

 

starting

 
considered
 

obtained


approximate
 
compared
 

measure

 
direct
 

Oliver

 
immediately
 

attention

 

Faraday

 

Another

 

consequence