FREE BOOKS

Author's List




PREV.   NEXT  
|<   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164   165   166   167   168   169   170   171   172   173  
174   175   176   177   178   179   180   181   182   183   184   185   186   187   188   189   190   191   192   193   194   195   196   197   198   >>   >|  
well ascertained case, I mentioned only ionisation by the X rays in the first instance, I ought not to give the impression that the phenomenon is confined to these rays. It is, on the contrary, very general, and ionisation is just as well produced by the cathode rays, by the radiations emitted by radio-active bodies, by the ultra-violet rays, by heating to a high temperature, by certain chemical actions, and finally by the impact of the ions already existing in neutral molecules. Of late years these new questions have been the object of a multitude of researches, and if it has not always been possible to avoid some confusion, yet certain general conclusions may be drawn. The ionisation by flames, in particular, is fairly well known. For it to be produced spontaneously, it would appear that there must exist simultaneously a rather high temperature and a chemical action in the gas. According to M. Moreau, the ionisation is very marked when the flame contains the vapour of the salt of an alkali or of an alkaline earth, but much less so when it contains that of other salts. Arrhenius, Mr C.T.R. Wilson, and M. Moreau, have studied all the circumstances of the phenomenon; and it seems indeed that there is a somewhat close analogy between what first occurs in the saline vapours and that which is noted in liquid electrolytes. There should be produced, as soon as a certain temperature is reached, a dissociation of the saline molecule; and, as M. Moreau has shown in a series of very well conducted researches, the ions formed at about 100 deg.C. seem constituted by an electrified centre of the size of a gas molecule, surrounded by some ten layers of other molecules. We are thus dealing with rather large ions, but according to Mr Wilson, this condensation phenomenon does not affect the number of ions produced by dissociation. In proportion as the temperature rises, the molecules condensed round the nucleus disappear, and, as in all other circumstances, the negative ion tends to become an electron, while the positive ion continues the size of an atom. In other cases, ions are found still larger than those of saline vapours, as, for example, those produced by phosphorus. It has long been known that air in the neighbourhood of phosphorus becomes a conductor, and the fact, pointed out as far back as 1885 by Matteucci, has been well studied by various experimenters, by MM. Elster and Geitel in 1890, for instance. On the other hand,
PREV.   NEXT  
|<   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164   165   166   167   168   169   170   171   172   173  
174   175   176   177   178   179   180   181   182   183   184   185   186   187   188   189   190   191   192   193   194   195   196   197   198   >>   >|  



Top keywords:
produced
 

ionisation

 

temperature

 
molecules
 
Moreau
 
saline
 

phenomenon

 

researches

 

chemical

 

studied


Wilson
 
circumstances
 

dissociation

 

molecule

 

general

 

instance

 

vapours

 

phosphorus

 

layers

 

reached


dealing
 

surrounded

 

formed

 
conducted
 

series

 
electrolytes
 
centre
 

constituted

 

electrified

 

conductor


pointed

 

neighbourhood

 
Geitel
 
Elster
 

Matteucci

 
experimenters
 

larger

 

condensed

 

nucleus

 

proportion


number

 

condensation

 
affect
 

disappear

 
negative
 
continues
 

positive

 

liquid

 
electron
 

alkaline