FREE BOOKS

Author's List




PREV.   NEXT  
|<   174   175   176   177   178   179   180   181   182   183   184   185   186   187   188   189   190   191   192   193   194   195   196   197   198  
199   200   201   >>  
phenomena of emission, ponderable matter is seen to give birth to waves which are transmitted by the ether, and by the phenomena of absorption it is proved that these waves disappear and excite modifications in the interior of the material bodies which receive them. We here catch in operation actual reciprocal actions and reactions between the ether and matter. If we could thoroughly comprehend these actions, we should no doubt be in a position to fill up the gap which separates the two regions separately conquered by physical science. In recent years numerous researches have supplied valuable materials which ought to be utilized by those endeavouring to construct a theory of radiation. We are, perhaps, still ill informed as to the phenomena of luminescence in which undulations are produced in a complex manner, as in the case of a stick of moist phosphorus which is luminescent in the dark, or in that of a fluorescent screen. But we are very well acquainted with emission or absorption by incandescence, where the only transformation is that of calorific into radiating energy, or _vice versa_. It is in this case alone that can be correctly applied the celebrated demonstration by which Kirchhoff established, by considerations borrowed from thermodynamics, the proportional relations between the power of emission and that of absorption. In treating of the measurement of temperature, I have already pointed out the experiments of Professors Lummer and Pringsheim and the theoretical researches of Stephan and Professor Wien. We may consider that at the present day the laws of the radiation of dark bodies are tolerably well known, and, in particular, the manner in which each elementary radiation increases with the temperature. A few doubts, however, subsist with respect to the law of the distribution of energy in the spectrum. In the case of real and solid bodies the results are naturally less simple than in that of dark bodies. One side of the question has been specially studied on account of its great practical interest, that is to say, the fact that the relation of the luminous energy to the total amount radiated by a body varies with the nature of this last; and the knowledge of the conditions under which this relation becomes most considerable led to the discovery of incandescent lighting by gas in the Auer-Welsbach mantle, and to the substitution for the carbon thread in the electric light bulb of a filament of osmium
PREV.   NEXT  
|<   174   175   176   177   178   179   180   181   182   183   184   185   186   187   188   189   190   191   192   193   194   195   196   197   198  
199   200   201   >>  



Top keywords:
bodies
 

radiation

 

energy

 
emission
 
phenomena
 
absorption
 

actions

 

relation

 

matter

 

manner


researches
 
temperature
 

doubts

 

increases

 

pointed

 

filament

 

subsist

 

treating

 

spectrum

 

measurement


respect
 

distribution

 

elementary

 
Professors
 

Lummer

 
theoretical
 
Professor
 

Pringsheim

 

present

 

experiments


osmium

 

results

 
tolerably
 
Stephan
 

considerable

 
conditions
 

knowledge

 

varies

 

nature

 

discovery


carbon

 

mantle

 
substitution
 

Welsbach

 
incandescent
 
lighting
 

thread

 

electric

 
radiated
 

specially